پتانسیل کارائی ایروژل هیبریدی کربن+ سیلیسی در حذف فنل از محلولهای آبی و بررسی مطالعات ایزوترمی، سنتیکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی بهداشت محیط و عضو مرکز تحقیقات تکنولوژی بهداشت محیط، دانشگاه علوم پزشکی ایران، تهران

2 دانشجوی دورة دکترا مهندسی بهداشت دانشگاه علوم پزشکی ایران، تهران- ایران و عضو هیئت علمی دانشگاه علوم پزشکی سبزوار، سبزوار- ایران گروه مهندسی بهداشت محیط، دانشکدة بهداشت دانشگاه علوم پزشکی سبزوار، سبزوار، ایران

چکیده

زمینه و هدف: فنل و مشتقات آن به طور وسیع در صنایع پتروشیمی، شیمائی و داروسازی استفاده می شود، فاضلاب این صنایع پایش شده است که حاوی غلظت بالای از ترکیبات فنل می‌باشد که ایجاد خطرات برای زندگی ابزیان و انسان می‌کند بنابراین فاضلاب‌های حاوی فنل قبل از دفع پساب بایستی تصفیه شوند.
روش کار: ایروژل هیبریدی با ساختار ابگریزی با استفاده از روش سل – ژل تهیه شد و به روش محیطی خشک گردید، و برای حذف فنل از آب به کار گرفته شد، تاثیر پارامترهای چون غلظت، زمان تماس و دوز جاذب بررسی شد، و مطالعات سنتیتیکی و ایزوترمی جهت ارزیابی تاثیر متغیرها به کار گرفته شد. سطح ویژه ایروژل با استفاده جذب نیتروزن در 77 درجه کلوین توصیف شد.
یافته‌ها: نتایج نشان داد که حداکثرظرفیت جذب ایروژل در غلظتmg/l 250 ، mg/g13/493بود. سطح ویژه ایروژل سنتز شده 2/g m543 ، سایز حفرات 3.24 ناومتری با درصد تخلخل44 و زاویه تماس 156 درجه است و سنتیتک از درجه دوم و ایزوترم جذب از مدل لانگمیر تبعیت می‌کند.
نتیجه گیری: نتایج نشان داد که فرایند جذب فنل شامل هر دو پدیده لایه مرزی و انتشار درون ذره ای است. همچنین دلیل اصلی برای کارائی جذب بالا فنل، سطح آبدوستی و آبگریزی ایروژل سنتز شده می‌باشد

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The potential of efficiency aerogel hybrid (Carbon + Silica) in the removal of phenol from aqueous solutions and studying isothermal studies, the traditional

نویسندگان [English]

  • ahmad jonodi 1
  • Ayoob Rastegar 2
1 Professor of Environmental Health Engineering and member of Environmental Health Technology Research Center, Iran University of Medical Sciences, Tehran, Iran
2 PhD Student, Department of Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran, faculty of Environmental Health Engineering, Sabzevar University of Medical Sciences, sabzevar, Iran
چکیده [English]

Back ground: Phenol and its derivatives are widely used as raw material in many petrochemical, chemical and pharmaceutical industries. Wastewaters from the industries mentioned above contain Phenolic compounds which are highly hazardous to aquatic life. Therefore, phenolic wastewaters must be specially treated before disposing off the effluents

Materials and methods: Hybrid aerogel with structure of hydrophobicity was prepared through sol–gel synthesis followed by drying at ambient. The aerogel was used for phenol adsorption from water and the effects of phenol concentration, also contact time were studied. Batch kinetic and isotherm studies were carried out to evaluate the effects of contact time and phenol concentration The Aerogel surface was characterized by nitrogen adsorption at 77 K.
Results: The result showed that the maximum adsorption was in the concentration 250 mg L− 1 493/13 mg g− 1. The specific surface area of the synthesized aerogel is 543.4 g m-2, the pore size is 3.24 nm with a porosity of 44 and a contact angle of 156 degrees, The Langmuir model and the pseudo-second-order fited the experimental data
Conclusion: the results showed that the phenol adsorption process involved both boundary layer diffusion and inter particle diffusion that hydrophilic and hydrophobic surface of the aerogel is synthesized
main reason for its higher adsorption efficiency phenol.

کلیدواژه‌ها [English]

  • phenol
  • aerogel
  • hybrid
  • isotherm
[1] Srivastava VC, Swamy MM, Mall ID, Prasad B, Mishra IM. Adsorptive removal of phenol by bagasse fly ash and activated carbon: equilibrium, kinetics and thermodynamics. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2006;272(1):89-104.
[2] Liu Q-S, Zheng T, Wang P, Jiang J-P, Li N. Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers. Chemical Engineering Journal. 2010;157(2-3):348-56.
[3] Shirzad-Siboni M, Jafari S-J, Farrokhi M, YangJK. Removal of phenol from aqueous solutions by activated red mud: equilibrium and kinetics studies. Environmental Engineering Research. 2013;18(4):247-52.
[4] Ahmaruzzaman M. Adsorption of phenolic compounds on low-cost adsorbents: a review. Advances incolloid and interface science. 2008;143(1):48-67.
[5] Gao X, Dai Y, Zhang Y, Fu F. Effective adsorption of phenolic compound from aqueous solutions on activated semi coke. Journal of Physics and Chemistry of Solids. 2017;102:142-50.
[6] Busca G, Berardinelli S, Resini C, Arrighi L. Technologies for the removal of phenol from fluid streams: a short review of recent developments. Journal of Hazardous Materials. 2008;160(2):265-88.
[7] Mohammadi S, Kargari A, Sanaeepur H, Abbassian K, Najafi A, Mofarrah E. Phenol removal from industrial wastewaters: a short review. Desalination and Water Treatment. 2015;53(8):2215-34.
[8] Roostaei N, Tezel FH. Removal of phenol from aqueous solutions by adsorption. Journal of Environmental Management. 2004;70(2):157-64.
[9] Asfaram A, Ghaedi M, Hajati S, Goudarzi A, Dil EA. Screening and optimization of highly effective ultrasound-assisted simultaneous adsorption of cationic dyes onto Mn-doped Fe3O4-nanoparticle-loaded activated carbon. Ultrasonics sonochemistry. 2017;34:1-12.
[10] Karri RR, Jayakumar N, Sahu J. Modelling of fluidised-bedreactor by differential evolution optimization for phenol removal using coconut shells based activated carbon. Journal of Molecular Liquids. 2017;231:249-62.
[11] Khan S, Raha ZF, Jabeen M, Rukh M, Reza ST, Khan EA. Removal of Organic Pollutant from Aqueous Solution by Rice Husk Activated Carbon (RHAC). Journal of Chemical Engineering. 2017;29(1):29-33.
[12] Matias T, Marques J, Quina MJ, Gando-Ferreira L, Valente AJ, Portugal A, et al. Silica-based aerogels as adsorbents for phenol-derivative compounds. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2015;480:260-9.
[13] Li Y-Q, Samad YA, Polychronopoulou K, Alhassan SM, Liao K. Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption. ACSSustainable Chemistry & Engineering. 2014;2(6):1492-7.
[14] Seraji MM, Ghafoorian NS, Bahramian AR. Investigation of microstructure and mechanical properties of novolac/silica and C/SiO 2/SiC aerogels using mercury porosimetry method. Journal of Non-Crystalline Solids. 2016;435:1-7.
[15] Wu Z, Joo H, Ahn I-S, Haam S, Kim J-H, Lee K. Organic dye adsorption on mesoporous hybrid gels. Chemical Engineering Journal. 2004;102(3):277-82.
[16] Lv G, Wu D, Fu R. Performance of carbon aerogels particle electrodes forthe aqueous phase electro-catalytic oxidation of simulated phenol wastewaters. Journal of hazardous materials. 2009;165(1):961-6.
[17] Anbia M, Amirmahmoodi S. Adsorption of phenolic compounds from aqueous solutions using functionalized SBA-15 as a nano-sorbent. Scientia Iranica. 2011;18(3):446-52.
[18] Seraji MM, Ghafoorian NS, Bahramian AR, Alahbakhsh A. Preparation and characterization of C/SiO 2/SiC aerogels based on novolac/silica hybrid hyperporous materials. Journal of Non-Crystalline Solids. 2015;425:146-52.
[19] Seraji MM, Sameri G, Davarpanah J, Bahramian AR. The effect of high temperature sol-gel polymerization parameters on the microstructure and properties of hydrophobic phenol-formaldehyde/silica hybrid aerogels. Journal of colloid and interface science. 2017;493:103-10.
[20] Yu H, Liang X, Wang J, Wang M, Yang S. Preparation and characterization of hydrophobic silica aerogel sphere products by co-precursor method. Solid State Sciences. 2015;48:155-62.
[21] Seraji MM, Seifi A, Bahramian AR. Morphology and properties of silica/novolac hybrid xerogels synthesized using sol–gel polymerization at solvent vapor-saturated atmosphere. Materials & Design. 2015;69:190-6.
[22] Seraji MM, Seifi A, Ghaforian NS, Bahramian AR. Synthesis of Novolac-silica Hybrid Aerogel using Modified Sol-gel Polymerization in Solvent-saturated Vapor Atmosphere. 2014.
[23] Qin G, Yao Y, Wei W, Zhang T. Preparation of hydrophobic granular silica aerogels and adsorption of phenol from water. Applied Surface Science. 2013;280:806-11.
[24] Rodrigues LA, Campos TMB, Alvarez-Mendes MO, dos Reis Coutinho A, Sakane KK, Thim GP. Phenol removal from aqueous solution by carbon xerogel. Journal of sol-gel science and technology. 2012;63(2):202-10.
[25] Zhang F, Wu W, Sharma S, Tong G, Deng Y. Synthesis of cyclodextrin-functionalized cellulose nanofibril aerogel as a highly effective adsorbent for phenol pollutant removal. BioResources. 2015;10(4):7555-68.