ایمنی درمانی سرطان: استفاده از سیستم ایمنی برای مبارزه با سرطان

نوع مقاله : مروری

نویسندگان

1 استاد، دکترای ژنتیک مولکولی پزشکی، دانشکدة پزشکی، دانشگاه علوم پزشکی تهران

2 کارشناسارشد ژنتیک انسانی، دانشکدة پزشکی، دانشگاه علوم پزشکی تهران

چکیده

زمینه امروزه درمان سرطان، از مهم‌ترین چالش‌های علوم پزشکی به شمار می‌آید. جراحی، شیمی درمانی، پرتودرمانی یا ترکیبی از این روش‌ها برای کوچک کردن و از بین بردن تومور استفاده می‌شود. هورمون درمانی، پیوند سلول‌های بنیادی و مغز استخوان و ایمنی درمانی، دیگر شیوه‌های درمانی هستند.
مواد و روش‌ها  ایمنی درمانی با استفاده از سیستم ایمنی، پس از جراحی، شیمی درمانی و پرتودرمانی از مهم‌ترین روش‌های مکمل در درمان سرطان است. این روش به‌طور سیستمیک انجام شده و برای جلوگیری از گسترش بدخیمی‌ها به کار می‌رود، اما در ایمنی درمانی به سلول‌های بدخیم حمله می‌شود و بر سلول‌های سالم بدن تأثیر چندانی نداشته، و اختصاصی عمل می‌کند. ایمنی درمانی سرطان در صورت به‌کارگیری مستقیم اجزای سیستم ایمنی و ایجاد پاسخ ایمنی فعال، ایمنی درمانی فعال، و در صورت تحریک غیرمستقیم و استفاده از محصولات ایمنی مانند آنتی‌بادی مونوکلونال، ایمنی درمانی غیرفعال خوانده می‌شود.
یافته‌ها نتایج حاکی از تأثیر درمان‌های ترکیبی در درمان سرطان، شامل ترکیب انواع روش‌های متداول درمان با ایمنی درمانی در کنار هم است. در این مقاله مروری مهم‌ترین پیشرفت‌های اخیر در ایمنی‌شناسی و ایمنی درمانی سرطان بررسی و بحث می‌شود. همچنین به سازوکارهای زمینه‌ساز فرار سلول‌های سرطانی از سیستم ایمنی اشاره شده است که به شناسایی درمان‌های جدید می‌انجامد.

کلیدواژه‌ها


عنوان مقاله [English]

Cancer immunotherapy: Use the immune system to fight cancer

نویسندگان [English]

  • Mohammad Reza Noori-Daloii 1
  • Zahra Sadr 2
1 Professor, PhD of Medical Molecular Genetics, Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
2 M.Sc. of Human Genetics, Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
چکیده [English]

Background & Objectives Cancer treatment is still one of the main challenges in the field of basic science and clinical science in medicine. Surgery is often the first option in the treatment of cancer, providing the tumor in a way that can be removed. Chemotherapy, radiation therapy, or a combination of both can be used to reduce the tumor in the pre- or post-surgical stage. Hormone therapy, stem cell and bone marrow cell transplantation, and immunotherapy are among other therapeutic approaches. Immunotherapy or the use of the immune system for treatment, after chemotherapy and radiation therapy is one of the most important complementary and effective methods for treating cancer. Immunotherapy such as chemotherapy is systematically done and used to prevent the spread of malignancies, but unlike that only attacks malignant cells and does not effect on normal cells. Cancer, immune therapy with the direct use of immune system components and makes an active immune response such as stimulating the patient's immune system cells and reintroducing these cells to the individual. Indirect stimulation and the use of immune products such as anti-cancer monoclonal antibody to remove tumor antigens is called passive immune therapy. Results The results from clinical trials confirm the design of combined therapies for cancer treatment, which include a combination of various immune therapies along with chemotherapy or the combination of several therapeutic immunotherapy approaches. Conclusion The goal of this review article is to concisely review some of the most important recent developments in cancer immunology and immunotherapy, and explain new insights into the mechanisms that underlie cancer immune evasion by which might lead to pathways for identifying novel treatments.

کلیدواژه‌ها [English]

  • cancer immunotherapy
  • CAR T-cells
  • inflammation
  • Myeloid-derived suppressor cells (MDSCs)
  • Tumor Infiltrating Lymphocytes (TILs)
[1]. Notghi P, Khorrami S, Vazini H, Mordadi A, Hajiahmadi F, Soleimaniasl S, et al. Tumor Immunotherapy, History and Achievements.
[2]. Noori-Daloii MR, ed. Emery's elements of medical genetics. 8thed. Tehran,Iran: Jame-e-negar and Salemi Publication; 2017. [in Persian].
[3]. Noori-Daloii MR, Medical molecular genetics in third millennium. Tehran,Iran: Samer Publication; 2012. [in Persian].
[4]. Yang Y. Cancer immunotherapy: harnessing the immune system to battle cancer. 2015; 125(9):3335-7.
[5]. McCarthy EF. The toxins of William B. Coley and the treatment of bone and soft-tissue sarcomas. 2006; 26:154.
[6]. Cann SH, Van Netten J, Van Netten C. Dr William Coley and tumour regression: a place in history or in the future. 2003; 79(938):672-80.
[7]. Parish CR. biology c. Cancer immunotherapy: the past, the present and the future. 2003;81(2):106-13.
[8]. Noori-Daloii MR, Rahimi-Rad N, Kavoosi S. Immunotherapy Usingengineered T-Cells(Cars): A significant evolution in modern medical biotechnology. 2018. [in Persian]
[9]. Noori-Daloii MR, Rahimi-Rad N, Kavoosi S. Car T-cells: Novel targeted therapies in cancer. 2018. [in Persian]
[10].Drake CG, Jaffee E, Pardoll D. Mechanisms of immune evasion by tumors. 2006; 90:51-81.
[11].Chen K, Husain S, Marathe A, Haq M, Sciences H. Molecular Genetics of Cancer. 2018; 2(4):199-208.
[12].M Candeias S, S Gaipl U. The immune system in cancer prevention, development and therapy. 2016; 16(1):101-7.
[13].Abbas AK, Lichtman AH, Pillai S. Cellular and molecular immunology: Elsevier Health Sciences; 1994.
[14].Sharabi A, Ying D, Thomas R, Klatzmann D, George C. Regulatory T cells in the treatment of disease. Nature Reviews Drug Discovery. 2018; 17:823-44.                                   
[15].Schreiber R, Old L, Smyth M. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. 2011; 331(6024):1565-70.
[16].Grivennikov S, Greten F, Karin M. Immunity, inflammation, and cancer. 2010; 140(6):883-99.
[17].Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? 2001; 357(9255):539-45.
[18].Coussens L, Werb Z. Inflammation and cancer. 2002; 420(6917):860.
[19].Desmoulière A, editor Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. 2nd Scar meeting; 2008.
[20].Shalapour S, Karin M. Immunity, inflammation, and cancer: an eternal fight between good and evil. 2015; 125(9):3347-55.
[21].Taniguchi K, Wu L, Grivennikov S, De Jong P, Lian I, Yu F, et al. A gp130–Src–YAP module links inflammation to epithelial regeneration. 2015; 519(7541):57.
[22].Sakr W, Grignon D, Crissman J, Heilbrun L, Cassin B, Pontes J, et al. High grade prostatic intraepithelial neoplasia (HGPIN) and prostatic adenocarcinoma between the ages of 20-69: an autopsy study of 249 cases. 1994; 8(3):439-43.
[23].Nelson W, Angelo M. De Marzo and William B. 2003; 349(4):366-81.
[24].Hussain S, Hofseth L, Harris C. Radical causes of cancer. 2003; 3(4):276.
[25].Cerutti P, Amstad P. Inflammation and oxidative stress in carcinogenesis. Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation and Radiation Injury: Springer; 1993. p. 387-90.
[26].Noori-Daloii MR, Hajifaraj-Tabrizi M. Cancer metastasis, genetic and microenvironmental factors of distant tissue: a review article. 2013; 70(11). [in Persian]
[27].Marvel D, Gabrilovich D. Myeloid-derived suppressor cells in the tumor microenvironment: expect the unexpected. 2015; 125(9):3356-64.
[28].Ugel S, De Sanctis F, Mandruzzato S, Bronte V. Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. 2015; 125(9):3365-76.
[29].Mundy-Bosse B, Lesinski G, Jaime-Ramirez A, Benninger K, Khan M, Kuppusamy P, et al. Myeloid-derived suppressor cell inhibition of the IFN response in tumor-bearing mice. 2011.
[30].Brunet J, Denizot F, Luciani M, Roux-Dosseto M, Suzan M, Mattei M, et al. A new member of the immunoglobulin superfamily—CTLA-4. 1987; 328(6127):267.
[31].Walunas T, Lenschow D, Bakker C, Linsley P, Freeman G, Green J, et al. CTLA-4 can function as a negative regulator of T cell activation. 1994; 1(5):405-13.
[32].Waterhouse P, Penninger J, Timms E, Wakeham A, Shahinian A, Lee K, et al. Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. 1995; 270(5238):985-8.
[33].Leach D, Krummel M, Allison J. Enhancement of antitumor immunity by CTLA-4 blockade. 1996; 271(5256):1734-6.
[34].Buchbinder E, Hodi F. Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade. 2015; 125(9):3377-83.
[35].Ishida Y, Agata Y, Shibahara K, Honjo T. Induced expression of PD‐1, a novel member of the immunoglobulin gene superfamily, upon programmed cell death. 1992; 11(11):3887-95.
[36].Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. 1999; 5(12):1365.
[37].Freeman G, Long A, Iwai Y, Bourque K, Chernova T, Nishimura H, et al. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. 2000; 192(7):1027-34.
[38].Dong H, Strome S, Salomao D, Tamura H, Hirano F, Flies D, et al. Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. 2002; 8(8):793.
[39].Topalian S, Hodi F, Brahmer J, Gettinger S, Smith D, McDermott D, et al. Safety, activity, and immune correlates of anti–PD-1 antibody in cancer. 2012; 366(26):2443-54.
[40].Eshhar Z, Waks T, Gross G, Schindler D. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. 1993; 90(2):720-4.
[41].Brentjens R, Latouche J, Santos E, Marti F, Gong M, Lyddane C, et al. Eradication of systemic B-cell tumors by genetically targeted human T lymphocytes co-stimulated by CD80 and interleukin-15. 2003; 9(3):279.
[42].Kochenderfer J, Wilson W, Janik J, Dudley M, Stetler-Stevenson M, Feldman S, et al. Eradication of B-lineage cells and regression of lymphoma in a patient treated with autologous T cells genetically-engineered to recognize CD19. 2010:blood-2010-04-281931.
[43].Kalos M, Levine B, Porter D, Katz S, Grupp S, Bagg A, et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. 2011; 3(95):95ra73-95ra73.
[44].Grupp S, Kalos M, Barrett D, Aplenc R, Porter D, Rheingold S, et al. Chimeric antigen receptor–modified T cells for acute lymphoid leukemia. 2013; 368(16):1509-18.
[45].Brentjens R, Davila M, Riviere I, Park J, Wang X, Cowell L, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. 2013; 5(177):177ra38-ra38.
[46].Melief C, Van Hall T, Arens R, Ossendorp F, VanderBurg S. Therapeutic cancer vaccines. 2015; 125(9):3401-12.
[47].Schumacher T. Neoantigens in cancer immunotherapy. Science. 2015; 348:69-74.
[48].Gubin M, Mardis E, Schreiber R. Tumor neoantigens: building a framework for personalized cancer immunotherapy. J Clin Invest. 2015; 125:3413-21.
[49].Criscitiello C, Esposito A, Gelao L, Fumagalli L, Locatelli M, Minchella I, et al. Immune approaches to the treatment of breast cancer, around the corner? 2014; 16(1):204.
[50].Eno J. Immunotherapy Through the Years. 2017; 8(7):747.
[51].Mittendorf E, Singletary S. Breast cancer vaccines. Cancer. 2007; 110:1677-86.
.