[1]. Roca I, Akova M, Baquero F, Carlet J, Cavaleri M, Coenen S, et al. The global threat of antimicrobial resistance: science for intervention. New microbes and new infections 2015; 6:22-9.
[2]. Lee S, Siddiqui R, Khan NA. Animals living in polluted environments are potential source of antimicrobials against infectious agents. Pathogens and global health 2012; 106(4): 218-23.
[3]. Holaskova E, Galuszka P, Frebort I, Oz MT. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol Adv 2015; 33(6 Pt 2): 1005-23.
[4]. Alpizar E, Dechamp E, Lapeyre-Montes F, Guilhaumon C, Bertrand B, Jourdan C, et al. Agrobacterium rhizogenes-transformed roots of coffee (Coffea arabica): conditions for long-term proliferation, and morphological and molecular characterization. Ann Bot 2008; 101(7): 929-40.
[5]. Zasloff M. Antimicrobial peptides of multicellular organisms. nature biotechnology 2002; 415: 389-95.
[6]. Li C, Blencke HM, Paulsen V, Haug T, Stensvag K. Powerful workhorses for antimicrobial peptide expression and characterization. Bioeng Bugs 2010; 1(3): 217-20.
[7]. Kuo Y-C, Tan C-C, Ku J-T, Hsu W-C, Su S-C, Lu C-A, et al. Improving Pharmaceutical Protein Production in Oryza sativa. International Journal of Molecular Sciences. 2013; 14(5): 8719-39.
[8]. Aleinein R, Schäfer H, Wink M. Rhizosecretion of the recombinant antimicrobial peptide ranalexin from transgenic tobacco hairy roots. RRJBS Phytopathol Gene Diseas 2015; 1: 45-55.
[9]. Moghadam A, Niazi A, Afsharifar A, Taghavi SM. Expression of a Recombinant Anti-HIV and Anti-Tumor Protein, MAP30, in Nicotiana tobacum Hairy Roots: A pH-Stable and Thermophilic Antimicrobial Protein. PLoS One 2016; 11(7): e0159653.
[10]. Carlín AP, Tafoya F, Alpuche Solís AG, Pérez-Molphe-Balch E. Effects of different culture media and conditions on biomass production of hairy root cultures in six Mexican cactus species. In Vitro Cellular & Developmental Biology - Plant 2015; 51(3): 332-9.
[11]. Fischer R, Stoger E, Schillberg S, Christou P, Twyman RM. Plant-based production of biopharmaceuticals. Curr Opin Plant Biol 2004; 7(2): 152-8.
[12]. Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, et al. Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant physiology 2014; 166(2): 455-69.
[13]. Skosyrev VS, Rudenko NV, Yakhnin AV, Zagranichny VE, Popova LI, Zakharov MV, et al. EGFP as a fusion partner for the expression and organic extraction of small polypeptides. Protein Expression and Purification 2003; 27: 55-62.
[14]. Osusky M, Osuska L, Kay W, Misra S. Genetic modification of potato against microbial diseases: in vitro and in planta activity of a dermaseptin B1 derivative, MsrA2 .Theor Appl Genet 2005; 111(4): 711-22.
[15]. Mor A, Amiche M, Nicolas P. Structure, synthesis, and activity of dermaseptin b, a novel vertebrate defensive peptide from frog skin: relationship with adenoregulin. Biochemistry 1994; 33(21): 6642-50.
[16]. Mor A ,Nicolas P. The NH2-terminal a-Helical Domain 1-18 of Dermaseptin Is Responsible for Antimicrobial Activi. The Journalof Biological 1994; 269(3): 1934-9.
[17]. Alibakhshi A, . Nazarian-Firouzabadi, F,. Ismaili, A. Expression and antimicrobial activity analysis of a Dermaseptin B1 antibacterial peptide in tobacco hairy roots. Plant Protection (Scientific Journal of Agriculture) 2018; 41(3): 87-97.
[18]. Bollag DM, Rozycki MD, Edelstein SJ. Protein methods. A John Wiley-liss, Inc, New York 1996; second edition.
[19]. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry 1976; 72(1-2): 248-54.
[20]. Che YZ, Li YR, Zou HS, Zou LF, Zhang B, Chen GY. A novel antimicrobial protein for plant protection consisting of a Xanthomonas oryzae harpin and active domains of cecropin A and melittin. Microb Biotechnol 2011; 4(6): 777-93.
[21]. Wayne P. CLSI. Performance Standards for Antimicrobial Susceptibility Testing. 28th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute 2018; 28th edition.
[22]. EUCAST. EUCAST. Terminology relating to methods for the determination of susceptibility of bacteria to antimicrobial agents. . Clinic Microbiol Infect 2000; 6: 503-8.
[23]. Chahardoli M, Fazeli A, Ghabooli M. Recombinant production of bovine Lactoferrin-derived antimicrobial peptide in tobacco hairy roots expression system. Plant Physiology and Biochemistry 2018; 123: 414-21.
[24]. Gaume A, Komarnytsky S, Borisjuk N, Raskin I. Rhizosecretion of recombinant proteins from plant hairy roots. Plant Cell Rep 2003; 21(12): 1188-93.
[25]. Ming L, Huang J-A. The antibacterial effects of antimicrobial peptides OP-145 against clinically isolated multi-resistant strains. Japanese journal of infectious diseases 2017; 70(6): 601-3.
همسانهسازی، بیان و بررسی اثر ضدمیکروبی پپتید نوترکیب...
277
دانشگاه علوم پزشکی سبزوار، مهر و آبان 7931 ، دورة 42 ، شمارة 2
[26]. Oyama LB, Crochet J-A, Edwards JE, Girdwood SE, Cookson AR, Fernandez-Fuentes N, et al. Buwchitin: A Ruminal Peptide with Antimicrobial Potential against Enterococcus faecalis. Frontiers in chemistry 2017; 5: 51.
[27]. Costa AA, Rossatto FCP, Medeiros AW. Evaluation antibacterial and antibioflm activity of the antimicrobial peptide P34 against Staphylococcus aureus and Enterococcus faecalis. An Acad Bras Cienc 2018; 90(1): 73-84.
[28]. Mor A, Hani K, Nicolas P. The vertebrate peptide antibiotics dermaseptins have overlapping structural features but target specific microorganisms. Journal of Biological Chemistry 1994; 269(50): 31635-41.
[29]. Nicolas P, El Amri C. The dermaseptin superfamily: a gene-based combinatorial library of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes 2009; 1788(8):1537-50.
[30]. Strahilevitz J, Mor A, Nicolas P, Shai Y. Spectrum of antimicrobial activity and assembly of dermaseptin-b and
its precursor form in phospholipid membranes. Biochemistry 1994; 33(36): 10951-60.
[31]. Friedrich CL, Moyles D, Beveridge TJ, Hancock RE. Antibacterial action of structurally diverse cationic peptides on gram-positive bacteria. Antimicrobial agents and chemotherapy 2000; 44(8): 2086-92.
[32]. Willmann R, Lajunen HM, Erbs G, Newman M-A, Kolb D, Tsuda K, et al. Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proceedings of the National Academy of Sciences 2011; 108(49): 19824-29.
[33]. Wong JEMM., Alsarraf HMAB, Kaspersen JD, Pedersen JS, Stougaard J, Thirup S, et al. Cooperative binding of LysM domains determines the carbohydrate affinity of a bacterial endopeptidase protein. FEBS Journal 2013; 281 1196-208.
[34]. Svitil AL, Kirchman DL. A chitin-binding domain in a marine bacterial chitinase and other microbial chitinases: implications for the ecology and evolution of 1, 4-β-glycanases. Microbiology 1998; 144(5): 1299-308.
[35]. Basile A, Sorbo S, Giordano S, Lavitola A, Cobianchi RC. Antibacterial activity in Pleurochaete squarrosa extract (Bryophyta). International journal of antimicrobial agents 1998; 10(2): 169-72.
[36]. Schneewind O, Missiakas D. Lipoteichoic acids, phosphate-containing polymers in the envelope of gram-positive bacteria. Journal of bacteriology 2014; 196(6): 1133-42.