بررسی اثرات ضدمیکروبی نانوذرات ترکیبی اکسید روی- منگنز و اکسید روی- آهن علیه باکتری شیگلا فلکسنری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استاد مرکز تحقیقات میکروبیولوژی مواد غذایی، گروه پاتوبیولوژی، دانشکدة بهداشت، دانشگاه علوم پزشکی تهران، تهران، ایران

2 استادیار گروه صنایع غذایی، واحد نیشابور، دانشگاه آزاد اسلامی، نیشابور، ایران

چکیده

در این تحقیق، سنتز نانوذرات منگنز- اکسید روی ، آهن- اکسید روی به روش ترسیب شیمیایی هم‌زمان و بررسی ویژگی-های ساختاری و مورفولوژیکی نانوذرات حاصله با استفاده از طیف مادون قرمز فوریه، پراش اشعه X و میکروسکوپ الکترونی عبوری صورت گرفت. اثرات ضد میکروبی نانوذرات در برابر باکتری شیگلا فلکسنری (PTCC 1234) توسط روش تعیین قطر هاله عدم رشد سنجیده شد. میزان هم افزایی نانوذرات با دو ماده پراکسید هیدروژن و هیپوکلریت سدیم با محاسبه حداقل غلظت بازدارنده کسری انجام شد. بررسی‌های ساختاری کارایی مناسب روش ترسیب شیمیایی هم‌زمان در تهیه نانوذرات منگنز- اکسید روی و آهن- اکسید روی را نشان داد. نتایج آزمون‌ ضد میکروبی نشان داد که نانوذرات منگنز- اکسید روی اثرات ضد میکروبی بیشتری بر روی شیگلا فلکسنری نسبت به آهن- اکسید روی دارد و قطر هاله عدم رشد برابر با 25 میلی‌متر ایجاد نمود در حالی‌که قطر هاله عدم رشد در مورد آهن- اکسید روی، 14 میلی‌متر بود. بعلاوه هر دو نانوذره ترکیبی اثرات ضد میکروبی بیشتری نسبت به نانوذرات اکسید روی به تنهایی نشان دادند و در نتیجه عمل ترکیب این عناصر در ساختار اکسید روی سبب بهبود خاصیت ضد میکروبی آن می‌گردد. همچنین مخلوط هر یک از نانوذرات با پراکسید هیدروژن و هیپوکلریت سدیم، اثرات هم‌افزایی داشتند که این اثر در غلظت‌های بالاتر، به صورت اثر هم افزایی کامل و در غلظت‌های پایین‌تر به صورت هم‌افزایی جزئی بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigation The Antimicrobial Eeffects of Manganese and Iron Doped Zinc Oxide Nanoparticles against Shigella flexneri

نویسندگان [English]

  • Soltan-Dallal Mohammad mahdi 1
  • Zohreh Didar 2
1 Department of Pathobiology, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
2 Department of Food Science and Technology, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
چکیده [English]

In this study, the synthesis of nanoparticles of manganese-zinc oxide and zinc iron oxide by chemical co- precipitation method performed and investigation of structural and morphological properties of related nanoparticles using Fourier Infrared spectrum, X-ray diffraction and Transmission electron microscopy were carried out. Antimicrobial effects against shigella flexneri (PTCC 1234) determined by inhibitory diameter zone method. Synergistic effect of nanoparticle with hydrogen peroxide and hypochlorite sodium also assessed by calculation of the fractional inhibitory concentration (FIC) index. Structural analysis of Mn- ZnO and Fe- ZnO nanoparticle revealed that co- precipitation is a suitable method for synthesis of these nanoparticles. Results of antimicrobial tests showed that Mn- ZnO nanoparticles has more antibacterial effect against shigella flexneri than Fe- ZnO nanoparticles. Inhibitory zone diameter of Mn- ZnO and Fe- ZnO were 25 and 14 mm, respectively. In addition, both doped nanoparticle exhibited more antimicrobial effect than zinc oxide nanoparticle so, doping cause increasing antimicrobial effect of zinc oxide nanoparticle. Furthermore, combination of nanoparticles with hydrogen peroxide and hypochlorite sodium showed synergistic effects which was complete synergistic at high concentration and partial synergistic at low concentrations.

کلیدواژه‌ها [English]

  • Zinc oxide
  • synergistic
  • Shigella flexneri
[1].   Fernandez-Garcia M, Martinez-Arias A, Hanson JC, Rodriguez JA. Nanostructured oxides in chemistry: characterization and properties. Chemical Reviews 2004; 104: 4063–104.
[2].   Corr SA. Metal oxide nanoparticles. Nanoscience 2013; 1: 180–234.
[3].   Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ. Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. International Journal of Nanomedicine 2010; 5: 277–83.
[4].   Whitesides GM. Nanoscience, nanotechnology, and chemistry. Small 2005; 1: 172–9.
[5].   Sutradhar P, Saha M, Maiti DJ. Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. Journal of Nanostructure in Chemistry 2014; 4: (86): 1-6.
[6].   Jin T, He Y. Antibacterial activities of magnesium oxide (MgO) nanoparticles against foodborne pathogens. Journal of Nanoparticle Research 2011; 13: 6877-85.
[7].   Kasraei S, Sami L, Hendi S, Alikhani MY, Rezaei-Soufi L, Khamverdi Z.Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restorative Dentistry & Endodontics 2014; 39: 109-14.
[8].   Seil JT,Webster TJ. Antibacterial effect of zinc oxide nanoparticles combine with ultrasound. Nanotechnology 2012; 23: 495101.
[9].   Zhang W, Shi X, Huang J, Zhang Y, Wu Z, Xian Y. Bacitracin-conjugated superparamagnetic iron oxide nanoparticles: synthesis, characterization and antibacterial activity. Chemphyschem 2012; 13: 3388-96.
[10].Poloju, M, Jayababu N, Ramana Reddy, M.V.2018. Improved gas sensing performance of Al doped ZnO/CuO nanocomposite based ammonia gas sensor. Materials Science and Engineering. B 227. 2018; 227: 61-67.
[11].Gupta K, Singh RP, Pandey A, Pandey A. Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus, P. aeruginosa and E. coli. Beilstein Journal of Nanotechnology 2013; 4:346–51.
[12].Muthukumaran S, Gopalakrishnan R. Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Optical Materials  2012; 34: 1946-53.
[13].Hameed ASH, Karthikeyan C, Sasikumar S, Kumar VS, Kumaresan S, Ravi G. Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method. Journal of Material Chemistry B. 2013; 1: 5950.
[14].Gomathi Devi L, Nagaraj B. Disinfection of Escherichia coli Gram negative bacteria using surface modified TiO2: optimization of Ag metallization and depiction of charge transfer mechanism. Photochemistry and Photobiology 2014; 5:1089–98.
[15].Bhushan M, Muthukamalam S, Sudharani S, Viswanath AK. Synthesis of α-Fe2-xAgxO3 nanocrystals and study of their optical, magnetic and antibacterial properties. RSC Advances 2015; 5: 32006-14.
[16].Patil AB, Bhanage BM. Green methodologies in the synthesis of metal and metal oxide nanoparticles. In: Kharisov BI, Kharissova OV, Dias HVR, editors.Nanomaterials for environmental protection. Hoboken, NJ: John Wiley & Sons, Inc.; 2014. p. 3-311.
[17].Bardhan P, Faruque AS, Naheed A, Sack  DA. Decrease in shigellosis-related deaths without Shigella spp.-specific interventions, Asia. Emerging Infectious Diseases Journal 2010; 16: 1718-23.
[18].Liew PS, Teh CSJ. Lau YL, Thong KL. A real-time loop-mediated isothermal amplification assay for rapid detection of Shigella species. Tropical Biomedicine 2014;31(4): 709-20.
[19].DuPont Herbert L, Levine Myron M, Hornick Richard B, Formal SB. 1989. Inoculum Size in Shigellosis and Implications for Expected Mode of Transmission Author (s): Herbert L. DuPont, Myron M. Levine, Richard B. Hornick and Samuel B. Formal Reviewed work (s): Published by: Oxford University Press Stable URL: http:/. Journal of Infectious Diseases. 159(6): 1126±8. PMID: 2656880.
[20].Ahmed AM, Shimamoto T. Molecular characterization of multidrug-resistant Shigella spp. of food origin. Int J Food Microbiol [Internet].2015; 194:78±82. Available from: http://dx.doi.org/10.1016/j.ijfoodmicro. 2014.11.013 PMID: 25485847.
[21].Mukhtar M,  Munisa L,  Saleh R. Co-Precipitation Synthesis and Characterization of Nanocrystalline Zinc Oxide Particles Doped with Cu2+ Ions. Materials Sciences and Applications. 2012; 3: 543-51
[22].Zapata A, Ramirez-Arcos S. A Comparative Study of McFarland Turbidity Standards and the Densimat Photometer to Determine Bacterial Cell  Density. Current Microbiology. 2015; 70: 907-909.
[23].Sawai J, Kojima H, Igarashi H, Hashimoto A, ShojiS, Sawaki T, et al. Antibacterial characteristics of magnesiumoxide powder. World Journal of Microbiology & Biotechnology 2000; 16(2): 187-94.
[24].Kumar KA, Mazumdar K, Dutta NK, Karak P, Dastidar SG, Ray R. Evaluation of synergism between the aminoglycoside antibiotic streptomycin and the cardiovascular agent amlodipine. Biological and Pharmaceutical Bulletin 2004; 27: 1116-20.
[25].Hameed ASH, Karthikeyan C, Sasikumar S, Kumar VS, Kumaresan S, Ravi G. Impact of alkaline metal ions Mg2+, Ca2+, Sr2+ and Ba2+ on the structural, optical, thermal and antibacterial properties of ZnO nanoparticles prepared by the co-precipitation method. Journal of Material Chemistry B 2013; 1: 5950.
[26].Malka E, Peralshtein I, Lipovsky A, Shalom Y, Naparstek L, Perkas N, Patick T, Lubart R, Nitzan Y, Banin E, Gedanken A. Eradication of multi-drug resistant bacteria by a novel Zn-doped CuO nanocomposite. Small 2013; 9: 4069-76.
[27].Muneer M. Ba-Abbad, Abdul Amir H. Kadhum, Abu Bakar Mohamad, Mohd S. Takriffand Kamaruzzaman Sopian. The effect of process parameters on the size of ZnO nanopartic synthesized via the sol-gel technique. Journal of Alloys and Compounds 2013; 8: 63-70.
[28].Amoupour E, Ghodsi FE, Andarva H, Abdolahzadeh ziabari, A. Preparation and investigation of optical, structural, and morphological properties of nanostructured ZnO:Mn thin films. Pramana – Journal of Physics 2013; 81(2): 33-341.
[29].Sharma N, Jandaik S, Kumar S,  Chitkara M, Singh Sandhu I. Synthesis, characterization and antimicrobial activity of manganese- and iron-doped zinc oxide nanoparticles. Journal of Experimental Nanoscience 2015; 11:1, 54-71.
[30].Hassan, IA, Sathasivam S, Nair SP, Carmalt, CJ. Antimicrobial Properties of Copper-Doped ZnO Coatings under Darkness and White Light Illumination. ACS Omega 2017; 2, 4556-62.
[31].Dong X, Koo Y, Tang Y, Yun Y, Yang Y. 2015. Superior Antibacterial Activity of Photochemical Synthesized Ag-CNT Composites and their Synergistic Effects in Combination with other Antimicrobial Agents. Journal of Nanomedicine and Nanotechnology 2015; 6(3): 1-7.
[32].Hendiani S, Abdi A A, Mohammadi P, Kharrazi Sh. Synthesis of silver nanoparticles and its synergistic effects in combination with imipenem and two biocides against biofilm producing Acinetobacter baumannii. Nanomedicine Journal 2015; 2(3): 291-98.