اثرات پلیوتروپیک ویتامین D بر سلامت و بیماری

نوع مقاله : مروری

نویسندگان

1 دانشیار ، مرکز تحقیقات سلولی و مولکولی ، دانشکده پزشکی، دانشگاه علوم پزشکی بیرجند، بیرجند، ایران

2 کارشناس ارشد ایمونولوژی، دانشکدة پزشکی، دانشگاه علوم پزشکی بیرجند، بیرجند، ایران

3 کارشناس ارشد ایمونولوژی، مرکز تحقیقات ایمونولوژی، دانشگاه علوم پزشکی تبریز، تبریز، ایران

4 دانشجوی دکتری تخصصی پزشکی مولکولی، دانشکدة پزشکی، دانشگاه علوم پزشکی بیرجند، بیرجند، ایران

چکیده

زمینه و هدف: ویتامین D یک ویتامین محلول در چربی می باشد که نقش آن درهموئوستاز کلسیم و فسفات از سالها قبل به خوبی شناخته شده است اما تحقیقات متعدد در سالهای اخیر نشان داده است که، ویتامین D در فرآیندهای متنوع و متعدد دیگری دخالت دارد. که از جمله میتوان به نقش آن در سیستم ایمنی و بیماریهای مربوطه اشاره کرد.
مواد و روش ها: در این مقاله جدیدترین یافته ها در خصوص نقش ویتامین D در سیستم ایمنی و تعدادی از بیماری های مرتبط با سیستم ایمنی مورد بررسی قرار گرفته اند.
یافته ها: بررسی مقالات نشان می دهد که ویتامین D و گیرنده ی آن نقش مهمی در عملکرد سیستم ایمنی بدن دارند.
نتیجه گیری: بنظر می رسد غربالگری سطح ویتامین D در جامعه میتواند نه تنها در پیشگیری از بروز برخی بیماریها و سرطانها بلکه در کاهش شدت بیماری و پاسخ بهتر به درمانهای رایج نقش مفیدی داشته باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Polyotropic effects of vitamin D on health and disease

نویسندگان [English]

  • Mohammad Fereidouni 1
  • Mohammad Sadegh Naghizadeh 2
  • Afshin Derakhshani 3
  • Maryam Moossavi 4
1 Associate professor, Cellular and molecular research committee, Birjand University of medical sciences, Birjand. Iran.
2 MSc of Immunology, Department of Immunology, Birjand University of Medical Sciences, Birjand, Iran
3 MSc of Immunology, Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
4 PhD candidate of Molecular Medicine, Department of Molecular Medicine, Birjand University of Medical Sciences, Birjand, Iran
چکیده [English]

Background: Vitamin D is a fat-soluble vitamin, which has been well known for its role on calcium and phosphate homeostasis since many years ago, but several studies in recent years have shown that vitamin D is involved in a variety of other processes which can be included its role on the immune system and the related diseases.
Materials and methods: In this article, the most recent findings about the role of vitamin D in the immune system and a number of immune-related diseases have been investigated.
Results: Reviewing the articles shows that vitamin D and its receptor have an important role in the function of the body immune system.
Conclusion: It seems that screening of vitamin D levels in the society can play a useful role not only in the preventing certain diseases and cancers but also in reducing the severity of the disease and better responding to common treatments.

کلیدواژه‌ها [English]

  • vitamin D
  • autoimmunity
  • adaptive immunity
  • innate immunity
  • cholecalciferol
[1].   Narooie-Nejad M, Moossavi M, Torkamanzehi A, Moghtaderi A, Salimi S. Vitamin D receptor gene polymorphism and the risk of multiple sclerosis in South Eastern of Iran. J MOL NEUROSCI. 2015; 56(3):572-76.
[2].   Houghton LA, Vieth R. The case against ergocalciferol (vitamin D2) as a vitamin supplement. AM J CLIN NUTR. 2006; 84(4):694-97.
[3].   Ross AC, Manson JE, Abrams SA, Aloia JF, Brannon PM, Clinton SK, et al. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: what clinicians need to know. J CLIN ENDOCR METAB. 2011; 96(1):53-58.
[4].   Viswanath D. Dietary Reference Intakes for Calcium and Vitamin D. J SCI INN RES. 2013; 2(3):710-15.
[5].   Institute of Medicine Committee to Review Dietary Reference Intakes for Vitamin D, Calcium. The National Academies Collection: Reports funded by National Institutes of Health. In: Ross AC, Taylor CL, Yaktine AL, Del Valle HB, editors. Dietary Reference Intakes for Calcium and Vitamin D. Washington (DC): National Academies Press (US) National Academy of Sciences; 2011.
[6].   Haussler MR, Jurutka PW, Mizwicki M, Norman AW. Vitamin D receptor (VDR)-mediated actions of 1alpha,25(OH) (2)vitamin D(3): genomic and non-genomic mechanisms. BEST PRACT RES CL EN. 2011; 25(4):543-59.
[7].   Carlberg C. Molecular approaches for optimizing vitamin D supplementation. InVitamins & Hormones 2016 Jan 1 (Vol. 100, pp. 255-271). Academic Press.
[8].   Christakos S, Dhawan P, Verstuyf A, Verlinden L, Carmeliet G. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiological reviews. 2015 Dec 16; 96(1):365-408.
[9].   Smith JE, Goodman DS. The turnover and transport of vitamin D and of a polar metabolite with the properties of 25-hydroxycholecalciferol in human plasma. J CLIN INVEST. 1971; 50(10):2159-67.
[10].Campbell FC, Xu H, El-Tanani M, Crowe P, Bingham V. The yin and yang of vitamin D receptor (VDR) signaling in neoplastic progression: operational networks and tissue-specific growth control. BIOCHEM PHARMACOL. 2010; 79(1):1-9.
[11].Moossavi M, Parsamanesh N, Mohammadoo‐Khorasani M, Moosavi M, Tavakkoli T, Fakharian T, Naseri M. Positive correlation between vitamin D receptor gene FokI polymorphism and colorectal cancer susceptibility in South‐Khorasan of Iran. J CELL BIOCHEM. 2018 Jun 28..
[12].Zehnder D, Bland R, Williams MC, McNinch RW, Howie AJ, Stewart PM, et al. Extrarenal expression of 25-hydroxyvitamin d(3)-1 alpha-hydroxylase. J CLIN ENDOCR METAB. 2001; 86(2):888-94.
[13].Grad R. Cod and the consumptive: a brief history of cod-liver oil in the treatment of pulmonary tuberculosis. Pharmacy in history. 2004; 46(3):106-20.
[14].Xu H, Soruri A, Gieseler RK, Peters JH. 1,25-Dihydroxyvitamin D3 exerts opposing effects to IL-4 on MHC class-II antigen expression, accessory activity, and phagocytosis of human monocytes. SCAND J IMMUNOL. 1993; 38(6):535-40.
[15].Yuk JM, Shin DM, Lee HM, Yang CS, Jin HS, Kim KK, et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. CELL HOST MICROBE. 2009; 6(3):231-43.
[16].Sommer A, Fabri M. Vitamin D regulates cytokine patterns secreted by dendritic cells to promote differentiation of IL-22-producing T cells. PLOS ONE. 2015; 10(6):e0130395.
[17].Ojaimi S, Skinner NA, Strauss BJ, Sundararajan V, Woolley I, Visvanathan K. Vitamin D deficiency impacts on expression of toll-like receptor-2 and cytokine profile: a pilot study. J TRANSL MED. 2013; 11(1):176.
[18].Provvedini DM, Tsoukas CD, Deftos LJ, Manolagas SC. 1, 25-dihydroxyvitamin D3 receptors in human leukocytes. Science. 1983; 221(4616):1181-83.
[19].Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of 1, 25-dihydroxyvitamin D3 on human B cell differentiation. J IMMUNOL. 2007; 179(3):1634-47.
[20].Mahon BD, Wittke A, Weaver V, Cantorna MT. The targets of vitamin D depend on the differentiation and activation status of CD4 positive T cells. J CELL BIOCHEM. 2003; 89(5):922-32.
[21].Lemire JM, Adams JS, Kermani-Arab V, Bakke AC, Sakai R, Jordan SC. 1,25-Dihydroxyvitamin D3 suppresses human T helper/inducer lymphocyte activity in vitro. J IMMUNOL. 1985; 134(5):3032-35.
[22].Dandie GW, Clydesdale GJ, Jacobs I, Muller HK. Effects of UV on the migration and function of epidermal antigen presenting cells. MUTAT RES. 1998; 422(1):147-54.
[23].Almerighi C, Sinistro A, Cavazza A, Ciaprini C, Rocchi G, Bergamini A. 1Alpha,25-dihydroxyvitamin D3 inhibits CD40L-induced pro-inflammatory and immunomodulatory activity in human monocytes. CYTOKINE. 2009; 45(3):190-97.
[24].Rigby WF, Noelle RJ, Krause K, Fanger MW. The effects of 1,25-dihydroxyvitamin D3 on human T lymphocyte activation and proliferation: a cell cycle analysis. J IMMUNOL. 1985; 135(4):2279-86.
[25].van Halteren AG, van Etten E, de Jong EC, Bouillon R, Roep BO, Mathieu C. Redirection of human autoreactive T-cells Upon interaction with dendritic cells modulated by TX527, an analog of 1,25 dihydroxyvitamin D(3). DIABETES. 2002; 51(7):2119-25.
[26].Barrat FJ, Cua DJ, Boonstra A, Richards DF, Crain C, Savelkoul HF, et al. In vitro generation of interleukin 10-producing regulatory CD4(+) T cells is induced by immunosuppressive drugs and inhibited by T helper type 1 (Th1)- and Th2-inducing cytokines. J EXP MED. 2002; 195(5):603-16.
[27].Reichel H, Koeffler HP, Tobler A, Norman AW. 1 alpha,25-Dihydroxyvitamin D3 inhibits gamma-interferon synthesis by normal human peripheral blood lymphocytes. Proceedings of the National Academy of Sciences of the United States of America. 1987; 84(10):3385-89.
[28].Heine G, Niesner U, Chang HD, Steinmeyer A, Zügel U, Zuberbier T, et al. 1, 25‐dihydroxyvitamin D3 promotes IL‐10 production in human B cells. EUR J IMMUNOL. 2008; 38(8):2210-8.
[29].Lemire JM, Adams J, Sakai R, Jordan S. 1 alpha, 25-dihydroxyvitamin D3 suppresses proliferation and immunoglobulin production by normal human peripheral blood mononuclear cells. J CLIN INVEST. 1984; 74(2):657.
[30].Park WH, Seol JG, Kim ES, Jung CW, Lee CC, Binderup L, et al. Cell cycle arrest induced by the vitamin D3 analog EB1089 in NCI-H929 myeloma cells is associated with induction of the cyclin-dependent kinase inhibitor p27. EXP CELL RES. 2000; 254(2):279-86.
[31].Kawa S, Nikaido T, Aoki Y, Zhai Y, Kumagai T, Furihata K, et al. Vitamin D analogues up-regulate p21 and p27 during growth inhibition of pancreatic cancer cell lines. BRIT J CANCER. 1997; 76(7):884-89.
[32].Chen S, Sims GP, Chen XX, Gu YY, Chen S, Lipsky PE. Modulatory effects of 1,25-dihydroxyvitamin D3 on human B cell differentiation. J IMMUNOL. 2007; 179(3):1634-47.
[33].Mirzakhani H, Al‐Garawi A, Weiss ST, Litonjua AA. Vitamin D and the development of allergic disease: how important is it? CLIN EXP ALLERGY. 2015; 45(1):114-25.
[34].Sabetta JR, DePetrillo P, Cipriani RJ, Smardin J, Burns LA, Landry ML. Serum 25-hydroxyvitamin d and the incidence of acute viral respiratory tract infections in healthy adults. PLOS ONE. 2010; 5(6):e11088.
[35].Hossein-nezhad A, Holick MF, editors. Vitamin D for health: a global perspective. Mayo Clinic Proceedings; 2013: Elsevier.
[36].Tolppanen A-M, Sayers A, Granell R, Fraser WD, Henderson J, Lawlor DA. Prospective association of 25-hydroxyvitamin d3 and d2 with childhood lung function, asthma, wheezing, and flexural dermatitis. EPIDEMIOLOGY. 2013; 24(2):310-9.
[37].Xystrakis E, Kusumakar S, Boswell S, Peek E, Urry Z, Richards DF, et al. Reversing the defective induction of IL-10-secreting regulatory T cells in glucocorticoid-resistant asthma patients. J CLIN INVEST. 2006; 116(1):146.
[38].Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. CURR OPIN PHARMACOL. 2010; 10(4):482-96.
[39].Louten J, Boniface K, de Waal Malefyt R. Development and function of T H 17 cells in health and disease. J ALLERGY CLIN IMMUN. 2009; 123(5):1004-11.
[40].Rausch-Fan X, Leutmezer F, Willheim M, Spittler A, Bohle B, Ebner C, et al. Regulation of cytokine production in human peripheral blood mononuclear cells and allergen-specific Th cell clones by 1α, 25-dihydroxyvitamin D3. INT ARCH ALLERGY IMM. 2002; 128(1):33-41.
[41].Prietl B, Pilz S, Wolf M, Tomaschitz A, Obermayer-Pietsch B, Graninger W, et al. Vitamin D supplementation and regulatory T cells in apparently healthy subjects: vitamin D treatment for autoimmune diseases? ISR MED ASSOC J: IMAJ. 2010; 12(3):136-39.
[42].Cantorna MT, Mahon BD. Mounting evidence for vitamin D as an environmental factor affecting autoimmune disease prevalence. EXP BIOL MED. 2004; 229(11):1136-42.
[43].Narooie-Nejad M, Moossavi M, Torkamanzehi A, Moghtaderi A. Positive association of vitamin D receptor gene variations with multiple sclerosis in South East Iranian population. BIOMED RES INT. 2015; 2015.
[44].Marques CDL, Dantas AT, Fragoso TS, Duarte ÂLBP. The importance of vitamin D levels in autoimmune diseases. REV BRAS PSIQUIATR. 2010; 50(1):67-80.
[45].Adorini L. Intervention in autoimmunity: the potential of vitamin D receptor agonists. CELL IMMUNOL. 2005; 233(2):115-24.
[46].Trémezaygues L, Reichrath J. Vitamin D analogs in the treatment of psoriasis: Where are we standing and where will we be going? Dermato- ENDOCRINOLOGY. 2011; 3(3):180-86.
[47].Aljabri KS, Bokhari SA, Khan MJ. Glycemic changes after vitamin D supplementation in patients with type 1 diabetes mellitus and vitamin D deficiency. ANN SAUDI MED. 2010; 30(6):454.
[48].Bartley J. Vitamin D: emerging roles in infection and immunity. EXPERT REV ANTI-INFE. 2010; 8(12):1359-69.
[49].Yuk J-M, Shin D-M, Lee H-M, Yang C-S, Jin HS, Kim K-K, et al. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. CELL HOST MICROBE. 2009; 6(3):231-43.
[50].Fabri M, Modlin RL. A vitamin for autophagy. CELL HOST MICROBE. 2009; 6(3):201-3.
[51].Lang PO, Aspinall R. Can we translate vitamin D immunomodulating effect on innate and adaptive immunity to vaccine response? NUTRIENTS. 2015; 7(3):2044-60.
[52].Lang PO, Samaras D. Aging adults and seasonal influenza: does the vitamin d status (h) arm the body? J AGING RES. 2012; 2012.
[53].Enioutina EY, Bareyan D, Daynes RA. TLR-induced local metabolism of vitamin D3 plays an important role in the diversification of adaptive immune responses. J IMMUNOL. 2009; 182(7):4296-305.
[54].Zitt E, Sprenger-Mähr H, Knoll F, Neyer U, Lhotta K. Vitamin D deficiency is associated with poor response to active hepatitis B immunisation in patients with chronic kidney disease. VACCINE. 2012; 30(5):931-35.
[55].Ovsyannikova IG, Haralambieva IH, Vierkant RA, O’Byrne MM, Jacobson RM, Poland GA. Effects of vitamin A and D receptor gene polymorphisms/haplotypes on immune responses to measles vaccine. PHARMACOGENET GENOM. 2012; 22(1):20.
[56].Ovsyannikova IG, Dhiman N, Haralambieva IH, Vierkant RA, O’Byrne MM, Jacobson RM, et al. Rubella vaccine-induced cellular immunity: evidence of associations with polymorphisms in the Toll-like, vitamin A and D receptors, and innate immune response genes. J HUM GENET. 2010; 127(2):207-21.
[57].Lalor MK, Floyd S, Gorak-Stolinska P, Weir RE, Blitz R, Branson K, et al. BCG vaccination: a role for vitamin D? PLOS ONE. 2011; 6(1):e16709.
[58].[58]. Zimmerman RK, Lin CJ, Raviotta JM, Nowalk MP. Do vitamin D levels affect antibody titers produced in response to HPV vaccine? HUM VACC IMMUNOTHER. 2015; 11(10):2345-49.
[59].(http://www.empr.com/idweek-2017--vaccines/vitamin-d-post-influenza-vacccination-antibody-titers-25ohd/article/696504/).
[60].Maguire JL, Russell ML, Smieja M, Walter SD, Loeb M. Serum 25-hydroxyvitamin d level and influenza vaccine immunogenicity in children and adolescents. PLOS ONE. 2014; 9(1):e83553.
[61].COLSTON K, COLSTON MJ, FELDMAN D. 1, 25-dihydroxyvitamin D3 and malignant melanoma: the presence of receptors and inhibition of cell growth in culture. ENDOCRINOLOGY. 1981; 108(3):1083-86.
[62].Díaz L, Díaz-Muñoz M, García-Gaytán AC, Méndez I. Mechanistic effects of calcitriol in cancer biology. NUTRIENTS. 2015; 7(6):5020-50.
[63].Ma Y, Yu W-D, Hershberger PA, Flynn G, Kong R-X, Trump DL, et al. 1α, 25-Dihydroxyvitamin D3 potentiates cisplatin antitumor activity by p73 induction in a squamous cell carcinoma model. MOL CANCER THER. 2008; 7(9):3047-55.
[64].Audo I, Darjatmoko SR, Schlamp CL, Lokken JM, Lindstrom MJ, Albert DM, et al. Vitamin D analogues increase p53, p21, and apoptosis in a xenograft model of human retinoblastoma. I INVEST OPHTH VIS SCI. 2003; 44(10):4192-99.
[65].Campbell MJ, Gombart AF, Kwok SH, Park S, Koeffler HP. The anti-proliferative effects of 1 [alpha], 25 (OH) 2D3 on breast and prostate cancer cells are associated with induction of BRCA1 gene expression. ONCOGENE. 2000; 19(44):5091.
[66].Kizildag S, Ates H, Kizildag S. Treatment of K562 cells with 1, 25-dihydroxyvitamin D3 induces distinct alterations in the expression of apoptosis-related genes BCL2, BAX, BCLXL, and p21. ANN HEMATOL. 2010; 89(1):1.
[67].Yu W-D, Hershberger PA, Muindi J, Fuller R, Kong R-X, Trump DL, et al. Calcitriol enhances gemcitabine anti-tumor activity in vitro and in vivo in a human pancreatic carcinoma model in association with increased apotosis and decreased P-Akt. AACR; 2004.
[68].Bernardi RJ, Johnson CS, Modzelewski RA, Trump DL. Antiproliferative effects of 1α, 25-dihydroxyvitamin D3 and vitamin D analogs on tumor-derived endothelial cells. ENDOCRINOLOGY. 2002; 143(7):2508-14.
[69].Chung I, Han G, Seshadri M, Gillard BM, Yu W-d, Foster BA, et al. Role of vitamin D receptor in the antiproliferative effects of calcitriol in tumor-derived endothelial cells and tumor angiogenesis in vivo. CANCER RES. 2009; 69(3):967-75.
[70].Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: potential for anticancer therapeutics. NAT REV CANCER. 2007; 7(9):684-700.
[71].Fleet JC, Desmet M, Johnson R, Li Y. Vitamin D and cancer: a review of molecular mechanisms. BIOCHEM J. 2012; 441(1):61-76.
[72].Haussler MR, Whitfield GK, Kaneko I, Haussler CA, Hsieh D, Hsieh J-C, et al. Molecular mechanisms of vitamin D action. CALCIFIED TISSUE INT. 2013; 92(2):77-98.
[73].Pilz S, Kienreich K, Tomaschitz A, Ritz E, Lerchbaum E, Obermayer-Pietsch B, et al. Vitamin D and cancer mortality: systematic review of prospective epidemiological studies. ANTI-CANCER AGENT ME. 2013; 13(1):107-17.
[74].Maund SL, Barclay WW, Hover LD, Axanova LS, Sui G, Hipp JD, et al. Interleukin-1α mediates the antiproliferative effects of 1, 25-dihydroxyvitamin D3 in prostate progenitor/stem cells. CANCER RES. 2011; 71(15):5276-86.
[75].Byers SW, Rowlands T, Beildeck M, Bong Y-S. Mechanism of action of vitamin D and the vitamin D receptor in colorectal cancer prevention and treatment. REV ENDOCR METAB DIS. 2012; 13(1):31-38.
[76].Jeon SM, Shin EA. Exploring vitamin D metabolism and function in cancer. Experimental & molecular medicine. 2018 Apr 16; 50(4):20.
[77].Dixon K, Norman A, Sequeira V, Mohan R, Rybchyn M, Reeve V. 1α, 25 (OH) 2-vitamin D and a nongenomic vitamin D analogue inhibit ultraviolet radiation-induced skin CARCINOGENESIS. Cancer Prev Res (Phila) 2011; 4: 1485-94; PMID: 21733837. CAPR-11-0165 PMID: 21733837.
[78].Lopes N, Sousa B, Martins D, Gomes M, Vieira D, Veronese LA, et al. Alterations in Vitamin D signalling and metabolic pathways in breast cancer progression: a study of VDR, CYP27B1 and CYP24A1 expression in benign and malignant breast lesions Vitamin D pathways unbalanced in breast lesions. BMC CANCER. 2010; 10(1):483.
[79].Quigley DA, To MD, Pérez-Losada J, Pelorosso FG, Mao J-H, Nagase H, et al. Genetic architecture of mouse skin inflammation and tumour susceptibility. NATURE. 2009; 458(7237):505-8.
[80].Zinser GM, McEleney K, Welsh J. Characterization of mammary tumor cell lines from wild type and vitamin D 3 receptor knockout mice. MOL CELL ENDOCRINOL. 2003; 200(1):67-80.
[81].Welsh J. Vitamin D and cancer: integration of cellular biology, molecular mechanisms and animal models. SCAND J CLIN LAB INV. 2012; 72(sup243):103-11.
[82].Feldman D, Krishnan AV, Swami S, Giovannucci E, Feldman BJ. The role of vitamin D in reducing cancer risk and progression. NAT REV CANCER. 2014; 14(5):342-57.
[83].Alvarez-Díaz S, Valle N, Ferrer-Mayorga G, Lombardía L, Herrera M, Domínguez O, et al. MicroRNA-22 is induced by vitamin D and contributes to its antiproliferative, antimigratory and gene regulatory effects in colon cancer cells. HUM MOL GENET. 2012; 21(10):2157-65.
[84].Giangreco AA, Vaishnav A, Wagner D, Finelli A, Fleshner N, Van der Kwast T, et al. Tumor suppressor microRNAs, miR-100 and-125b, are regulated by 1, 25-dihydroxyvitamin D in primary prostate cells and in patient tissue. CANCER PREV RES. 2013; 6(5):483-94.
[85].Kasiappan R, Shen Z, Anfernee K, Jinwal U, Tang J, Lungchukiet P, et al. 1, 25-Dihydroxyvitamin D3 suppresses telomerase expression and human cancer growth through microRNA-498. J BIOL CHEM. 2012; 287(49):41297-309.
[86].Padi SK, Zhang Q, Rustum YM, Morrison C, Guo B. MicroRNA-627 mediates the epigenetic mechanisms of vitamin D to suppress proliferation of human colorectal cancer cells and growth of xenograft tumors in mice. GASTROENTEROLOGY. 2013; 145(2):437-46.
[87].Ting H-J, Messing J, Yasmin-Karim S, Lee Y-F. Identification of microRNA-98 as a therapeutic target inhibiting prostate cancer growth and a biomarker induced by vitamin D. J BIOL CHEM. 2013; 288(1):1-9.
[88].Welsh J. Vitamin D and breast cancer: insights from animal models. AM J CLIN NUTR. 2004; 80(6):1721S-4S.
[89].Bai Y-H, Lu H, Hong D, Lin C-C, Yu Z, Chen B-C. Vitamin D receptor gene polymorphisms and colorectal cancer risk: a systematic meta-analysis. WORLD J GASTROENTERO: WJG. 2012; 18(14):1672.
[90].Rai V, Abdo J, Agrawal S, Agrawal DK. Vitamin D receptor polymorphism and cancer: an update. Anticancer research. 2017 Aug 1; 37(8):3991-4003.
[91].Touvier M, Chan DS, Lau RN, Aune D, Vieira R, Greenwood DC, et al. Meta-analyses of vitamin D intake, 25-hydroxyvitamin D status, vitamin D receptor polymorphisms and colorectal cancer risk. CANCER EPIDEM BIOMAR. 2011:cebp. 1141.2010.
[92].Lin VC, Huang SP, Ting HJ, Ma WL, Yu CC, Huang CY, Yin HL, Huang TY, Lee CH, Chang TY, Lu TL. Vitamin D receptor-binding site variants affect prostate cancer progression. Oncotarget. 2017 Sep 26; 8(43):74119.