تأثیر هشت هفته تمرین هوازی و عصاره چای سبز بر برخی عوامل التهابی در بافت پروستات موش‌های سالم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فیزیولوژی ورزش دانشگاه بیرجند، بیرجند، ایران

2 دانشیار فیزیولوژی ورزش، دانشگاه بیرجند، بیرجند، ایران.

3 استادیار بیوشیمی بالینی، دانشگاه علوم پزشکی کردستان، سنندج، ایران

4 دانشیار فیزیولوژی ورزش، دانشگاه کردستان، سنندج، ایران

چکیده

زمینه  اصلاح سبک زندگی، از جنبههای مهم پیشگیری از بیماریهای مختلف از جمله انواع سرطان میباشد. هدف  B پژوهش حاضر، بررسی تأثیر هشت هفته تمرین هوازی و دریافت عصاره چای سبز بر سطوح فاکتور هستهای کاپا (NF COX ( 0- -)، سیکلواکسیژناز κB . در بافت پروستات موشهای سالم بود p53 -) و پروتئین سرکوبگر تومور 2 سر موش صحرایی نر بهصورت تصادفی در چهار گروه تمرین هوازی، عصاره 50 روش کار در این مطالعه تجربی، چای سبز، تمرین هوازی + عصاره چای سبز و کنترل تقسیم شدند. برنامه تمرین هوازی شامل راه رفتن و دویدن  0 دقیقهای با تناوب استراحتی 93 متر در دقیقه، سه نوبت 5-96 روی نوارگردان با شدت کم تا متوسط (سرعت  میلیلیتر از محلولی با 9/5 دقیقهای در هر جلسه، پنج جلسه در هفته) بود. عصاره چای سبز نیز روزانه بهمیزان  میلیلیتر به گروههای مربوطه گاواژ گردید (سه جلسه در هفته). چهل و هشت ساعت 966 میلیگرم در 96غلظت پس از پایان مداخله، بافتبرداری انجام شد. روشهای آماری آنالیز کوواریانس و آنالیز واریانس یکراهه برای تحلیل نتایج استفاده شد. )، اما P = 6/60 نسبت به گروه کنترل شد ( NF-κB یافتهها تمرین هوازی، سبب افزایش معنادار سطح پروتئین NF ترکیب تمرین هوازی و مصرف عصاره چای سبز، تغییر معناداری در سطح پروتئین - ایجاد نکرد. سطوح κB COX پروتئینهای  6/63 نیز متعاقب تمرین هوازی و مصرف عصاره چای سبز، تغییر معناداری نداشت ( p53 - و 2 <P ).  متعاقب تمرین هوازی را تعدیل NF-κB نتیجهگیری بهنظر میرسد مصرف مکمل چای سبز میتواند سطح پروتئین کند که نشاندهنده اثرات ضدالتهابی چای سبز و نقش احتمالی آن در پیشگیری از سرطان پروستات میباشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The effect of eight weeks aerobic training and green tea extract on some inflammatory factors in prostate tissue of healthy rats

نویسندگان [English]

  • Saber Saed-Mocheshi 1
  • Marziyeh Saghebjoo 2
  • Zakaria Vahabzadeh 3
  • Dariush Sheikholeslami Vatani 4
1 Ph.D Student in Exercise Physiology, University of Birjand, Birjand, Iran
2 Associate Professor in Exercise Physiology, University of Birjand, Birjand, Iran.
3 Assistant professor in Clinical Biochemistry, Kurdistan University of Medical Sciences, Sanandaj, Iran.
4 Associate Professor in Exercise Physiology, University of Kurdistan, Sanandaj, Iran
چکیده [English]

Background and Objectives: Lifestyle modification is an important aspect of preventing various diseases, including various types of cancer. The aim of the present study was to investigate the effect of eight weeks of aerobic training and green tea extract on NF-κB, COX-2 and suppressor protein of p53 in prostate tissue of healthy rats.
Materials & Methods: 32 male Wistar rats were randomly divided into four groups: green tea extract, exercise training, green tea extract + exercise training, and control. The exercise training program included aerobic training on a low to moderate intensity on the treadmill (at a speed of 3-10 m/s, 3 sets of 15 min with 2 min of rest between sets, 5 days a week). Green tea extract was gavaged at a dose of 1.3 ml of solution at a concentration of 10 mg/100 ml (3 sessions per week). Scarify was performed 48 hours after the end of the intervention. The results were analyzed using parametric statistical methods of analysis of covariance and one way ANOVA.
Results: Aerobic training significantly increased NF-κB level compared to the control group (P = 0.02). The combination of aerobic training and consumption of green tea extract did not significantly change the level of NF-κB. The COX-2 and p53 levels were not significantly different after aerobic training and green tea extract (P > 0.05).
Conclusion: Green tea supplementation seems to modulate NF-κB level following aerobic training, which can reflect the anti-inflammatory effects of green tea and its role in preventing prostate cancer.

کلیدواژه‌ها [English]

  • Aerobic Training
  • green tea extract
  • NF-κB
  • COX-2
  • prostate gland
[1].    Galvao DA, Taaffe DR, Spry N, Cormie P, Joseph D, Chambers SK, et al. Exercise preserves physical function in prostate cancer patients with bone metastases. Medicine and Science in Sports and Exercise. 2018;50(3):393-399.
[2].    Campbell KL, McTiernan A. Exercise and biomarkers for cancer prevention studies. The Journal of Nutrition. 2007;137(1 Suppl):161S-169S.
[3].    Mills PK, Beeson WL, Phillips RL, Fraser GE. Cohort study of diet, lifestyle, and prostate cancer in Adventist men. Cancer. 1989;64(3):598-604.
[4].    Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC. Intake of carotenoids and retino in relation to risk of prostate cancer. Journal of the National Cancer Institute. 1995;87(23):1767-76.
[5]. Koh Y, Park KS. Responses of inflammatory cytokines following moderate intensity walking exercise in overweight or obese individuals. Journal of Exercise Rehabilitation. 2017;13(4):472-476.
[6]. Adamopoulos S, Parissis J, Kroupis C, Georgiadis M, Karatzas D, Karavolias G, et al. Physical training reduces peripheral markers of inflammation in patients with chronic heart failure. European Heart Journal. 2001;22(9):791-7.
[7]. Cummings JH, Bingham SA. Diet and the prevention of cancer. British Medical Journal. 1998;317(7173):1636-40.
[8]. Sheng R, Gu ZL, Xie ML, Zhou WX, Guo CY. Epigallocatechin gallate protects H9c2 cardiomyoblasts against hydrogen dioxides-induced apoptosis and telomere attrition. European Journal of Pharmacology. 2010;641(2-3):199-206.
[9]. Lassed S, Deus CM, Djebbari R, Zama D, Oliveira PJ, Rizvanov AA, et al. Protective effect of green tea (Camellia sinensis (L.) Kuntze) against prostate cancer: from in vitro data to Algerian patients. Evidence-Based Complementary and Alternative Medicine. 2017;2017:1691568.
[10]. Janssens S, Tschopp J. Signals from within: the DNAdamage-induced NF- kappaB response. Cell Death and Differentiation. 2006;13(5):773-84.
[11]. Lin Y, Bai L, Chen W, Xu S. The NF-κB activation pathways, emerging molecular targets for cancer prevention and therapy. Expert Opinion on Therapeutic Targets. 2010;14(1):45-55.
[12]. Flamiatos JF, Beer TM, Graff JN, Eilers KM, Tian W, Sekhon HS, et al. Cyclooxygenase‐2 (COX‐2) inhibition for prostate cancer chemoprevention: double‐blind randomised study of pre‐prostatectomy celecoxib or placebo. BJU International. 2017;119(5):709-716.
[13]. Gallego GA, Prado SD, Fonseca PJ, Campelo RG, Espinosa JC, Aparicio LA. Cyclooxygenase-2 (COX-2): a molecular target in prostate cancer. Clinical and Translational Oncology. 2007;9(11):694-702.
[14]. Nascimento-Gonçalves E, Faustino-Rocha AI, Seixas F, Ginja M, Colaço B, Ferreira R, et al. Modelling human prostate cancer: Rat models. Life Sciences. 2018;203:210224.
[15]. Kundu JK, Shin YK, Kim SH, Surh YJ. Resveratrol inhibits phorbol ester-induced expression of COX-2 and activation of NF-κB in mouse skin by blocking IκB kinase activity. Carcinogenesis. 2006;27(7):1465-74.
[16]. Meek DW. Regulation of the p53 response and its relationship to cancer. Biochemical Journal. 2015;469(3):325-46. [17]. Beyfuss K, Erlich AT, Triolo M, Hood DA. The Role of p53 in determining mitochondrial adaptations to endurance training in skeletal muscle. Scientific Reports. 2018;8(1):14710.
[18]. Barsevick AM, Irwin MR, Hinds P, Miller A, Berger A, Jacobsen P, et al. Recommendations for high-priority research on cancer-related fatigue in children and adults. Journal of the National Cancer Institute. 2013;105(19):143240.
[19]. Mohamad H, McNeill G, Haseen F, N’Dow J, Craig LC, Heys SD. The effect of dietary and exercise interventions on body weight in prostate cancer patients: a systematic review. Nutrition and Cancer. 2015;67(1):43-60.
[20]. McCullough DJ, Nguyen LM-D, Siemann DW, Behnke BJ. Effects of exercise training on tumor hypoxia and vascular function in the rodent preclinical orthotopic prostate cancer model. Journal of Applied Physiology. 2013;115(12):1846-54. [21]. Fenning A, Harrison G, Dwyer D, Rose’Meyer R, Brown L. Cardiac adaptation to endurance exercise in rats. Molecular and Cellular Biochemistry. 2003; 251 (1-2): 51-9.
[22]. Saedmocheshi S, Saghebjoo M, Vahabzadeh Z, Sheikholeslami-Vatani D. Aerobic training and green tea extract protect against NMU-induced prostate cancer. Medicine and Science in Sports and Exercise. 2019; 51(11):2210-2216.
[23]. Mohamadin AM, El-Beshbishy HA, El-Mahdy MA. Green tea extract attenuates cyclosporine A-induced oxidative stress in rats. Pharmacological Research. 2005;51(1):51-7.
[24]. Adhami VM, Siddiqui IA, Sarfaraz S, Khwaja SI, Hafeez BB, Ahmad N, et al. Effective prostate cancer chemopreventive intervention with green tea polyphenols in the TRAMP model depends on the stage of the disease. Clinical Cancer Research. 2009;15(6):1947-53.
[25]. Arroyo-Acevedo J, Herrera-Calderón O, Chávez-Asmat R, Anampa-Guzmán A, Chumpitaz-Cerrate V, Enciso-Roca E. Protective effect of Chuquiraga spinosa extract on Nmethyl-nitrosourea (NMU) induced prostate cancer in rats. Prostate International. 2017;5(2):47-52.
[26]. Yamamoto Y, Gaynor RB. Therapeutic potential of inhibition of the NF-κB pathway in the treatment of inflammation and cancer. The Journal of Clinical Investigation. 2001;107(2):135-42.
[27]. Stock D, Groome PA, Siemens DR. Inflammation and prostate cancer: a future target for prevention and therapy? Urologic Clinics of North America. 2008;35(1):117-30.
[28]. Kaltschmidt B, Greiner J, Kadhim H, Kaltschmidt C. Subunit-specific role of NF-κB in cancer. Biomedicines. 2018;6(2): E44.
[29]. Li F, Zhang J, Arfuso F, Chinnathambi A, Zayed M, Alharbi SA, et al. NF-κB in cancer therapy. Archives of Toxicology. 2015;89(5):711-31.
[30]. Hughes K, Antonsson Å, Grundstrøm T. Calmodulin dependence of NFκB activation. FEBS letters. 1998;441(1):132-136.
[31]. Liu T, Zhang L, Joo D, Sun S-C. NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy. 2017;2:17023.
[32]. Liu HW, Chang SJ. Moderate exercise suppresses NF-κB signaling and activates the SIRT1-AMPK-PGC1a axis to attenuate muscle loss in diabetic db/db mice. Frontiers in Physiology. 2018;9:636.
[33]. Di Lorenzo C, Dell’Agli M, Sangiovanni E, Dos Santos A, Uberti F, Moro E, et al. Correlation between catechin content and NF-κB inhibition by infusions of green and black tea. Plant Foods for Human Nutrition. 2013;68(2):149-54.
[34]. Nomura M, Ma W, Chen N, Bode AM, Dong Z. Inhibition of 12-O-tetradecanoylphorbol-13-acetate-induced NF-κB activation by tea polyphenols,(–)-epigallocatechin gallate and theaflavins. Carcinogenesis. 2000;21(10):1885-90.
[35]. Connors SK, Chornokur G, Kumar NB. New insights into the mechanisms of green tea catechins in the chemoprevention of prostate cancer. Nutrition and Cancer. 2012;64(1):4-22.
[36]. Kim SY, Jun TW, Lee YS, Na HK, Surh YJ, Song W. Effects of exercise on cyclooxygenase‐2 expression and nuclear factor‐κB DNA binding in human peripheral blood mononuclear cells. Annals of the New York Academy of Sciences. 2009;1171:464-71.
[37]. Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, et al. p53 regulates mitochondrial respiration. Science. 2006;312(5780):1650-3.
[38]. Robey RB, Hay N. Is Akt the “Warburg kinase”?—Aktenergy metabolism interactions and oncogenesis. Seminars in Cancer Biology; 2009; 19(1):25-31.
[39]. Seyedgomi F, Bashiri J, Gholami F. Effect of high intensity endurance training on p53 and cytochrome-c gene expression in male rat soleus muscle. Armaghane Danesh. 2017;22(5):608-22. (In persion).
[40]. Wang PY, Zhuang J, Hwang PM. p53: exercise capacity and metabolism. Current Opinion in Oncology. 2012;24(1):76-82.
[41]. Warburg O. On the origin of cancer cells. Science. 1956;123(3191):309-14.
[42]. Zhou S, Kachhap S, Singh KK. Mitochondrial impairment in p53-deficient human cancer cells. Mutagenesis. 2003;18(3):287-92.
[43]. Bartlett JD, Close GL, Drust B, Morton JP. The emerging role of p53 in exercise metabolism. Sports Medicine. 2014;44(3):303-9.