بررسی تأثیر ضدباکتریایی نانوذرات نقره داپ شده با نانوکریستال آهن بر باکتری استافیلوکوک اپیدرمیدیس جداشده از عفونت‌های بیمارستانی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 کارشناسی‌ارشد، گروه میکروبیولوژی، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

2 استادیار، گروه میکروبیولوژی، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

چکیده

زمینه و هدف: استافیلوکوکوس اپیدرمیدیس از پاتوژن‌های فرصت‌طلب است که اخیراً از مهم‌ترین عوامل ایجاد عفونت­های بیمارستانی است. شیوع این دسته از عفونت­ها در کنار افزایش گونه‌های مقاوم به آنتی‌بیوتیک­ به یک معضل نگران‌کننده مبدل شده است. استفاده از نانوذرات برای مقابله با عفونت‌های باکتریایی می‌تواند جایگزین آنتی‌بیوتیک‌ها باشد. در این تحقیق خواص ضدباکتریایی نانوذرات نقره داپ شده بر نانوکریستال اکسیدآهن بر باکتری استافیلوکوک اپیدرمیدیس جداشده از عفونت‌های بیمارستانی بررسی گردید.    
مواد و روش‌ها: ابتدا نانوذرات به روش هم‌رسوبی شیمیایی ساخته شدند، سپس برای بررسی خاصیت باکتری‌کشی، غلظت‌های 0، 20، 40، 60،80 و100 ppm تهیه گردید و تأثیر نانوذرات بر باکتری‌های ایزوله و استاندارد استافیلوکوکوس اپیدرمیدیس در زمان­های 24، 48 و72 ساعت به روش میکروپلیت تیتر مطالعه شد و سپس داده­ها با نرم‌افزار SPSS-18 در سطح خطای 0/01 بررسی گردید.    
یافته­ها: نتایج نشان داد متغیرهای زمان، نوع باکتری و غلظت، تأثیر معنی‌دار بر مهار رشد باکتری استافیلوکوکوس اپیدرمیدیس دارند که غلظت و نوع باکتری تأثیرات به‌مراتب بیشتری از خود نشان دادند. بیشترین تأثیر ضدباکتری نانوذرات نقره داپ شده با نانوکریستال آهن مربوط به غلظت 100ppm در زمان‌ماند 48 ساعت بر باکتری استاندارد بود.
نتیجه­گیری: نانوذرات نقره داپ شده با نانوکریستال آهن بر رشد باکتری استافیلوکوکوس اپیدرمیدیس مؤثرند و باعث کاهش رشد آن می‌شوند. این اثرگذاری نسبت به تأثیر نانوذرات نقره در حالت منفرد که قبلاً موردبررسی محققان قرار گرفته است بیشتر می‌باشد و ترکیب نانوذرات فلزی باهم باعث بهبود اثربخشی آن­ها شد. 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluating Anti-Bacterial Effect of Doped Silver Nanoparticles on Iron Oxide Nanocrystal in Staphylococcus Epidermidis Isolated from Nosocomial Infection

نویسندگان [English]

  • Hanieh Bayat 1
  • Reza Habibipour 2
  • Narges Ghobadi 2
  • Fatemeh Golipour 1
1 M.Sc, Department of Microbiology,Faculty of Basic Sciences,Hamedan Branch,Islamic Azad University, Hamedan, Iran
2 Assistant Professor, Department of Microbiology, Faculty of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran
چکیده [English]

Introduction: Staphylococcus epidermidis is an opportunistic pathogen and of the most important cause of infectious diseases. The prevalence of these infections, as well as the increase of antibiotic-resistant species, has become a solicitous issue. Using nanoparticles to combat bacterial infections can replace antibiotics. In this study, the antibacterial properties of doped silver nanoparticles on Iron oxide nanocrystal on isolated Staphylococcus epidermidis bacteria from nosocomial infection was studied.
Materials and Methods: Firstly, Nanoparticles were prepared by chemical co-precipitation method and were prepared at concentrations of 0, 20, 40, 60, 80 and 100 ppm to determine bactericidal properties. The effect of nanoparticles on isolated and standard strains of Staphylococcus epidermidis at 24, 48 and 72 hours were investigated by microplate titer. Data were analyzed by SPSS -18 software at a 0.01 margin of error.
Results: The results showed that time, bacterial type and concentration factors had a significant effect on the growth inhibition of Staphylococcus epidermidis, though the concentration and type of bacterial variables had more significant effects. The most antibacterial effect of doped silver nanoparticles on iron oxide nanocrystals was at 100ppm concentration over a 48-hour time on standard isolate.
Conclusion: Doped Silver nanoparticles on Iron nanocrystals affect the growth of Staphylococcus epidermidis and reduce its growth rate. This effect, in comparison to the effects of silver nanoparticles in a single state, which has already been investigated by researchers, is far more advanced and the combination of Metal nanoparticles together cause to improve their effectiveness.

کلیدواژه‌ها [English]

  • Silver nanoparticles
  • Iron Nanocrystals
  • Staphylococcus epidermidis
  • Nosocomial infection
  1. Rajabi M, Abdar ME, Rafiei H, Aflatoonia MR, Abdar ZE. Nosocomial infections and epidemiology of antibiotic resistance in teaching hospitals in south east of Iran. Global journal of health science. 2016;8(2):190.
  2. Stefanini I, Boni M, Silvaplana P, Lovera P, Pelassa S, De Renzi G, Mognetti B. Antimicrobial Resistance, an Update from the Ward: Increased Incidence of New Potential Pathogens and Site of Infection-Specific Antibacterial Resistances. Antibiotics. 2020;9(9):631.
  3. Michels R, Last K, Becker SL, Papan C. Update on Coagulase-Negative Staphylococci—What the Clinician Should Know. Microorganisms. 2021;9(4):830.
  4. Goudarzi M, Mehrabi M, Mirzaee M. A study on the prevalence of IS256 insertion sequence and biofilm formation in staphylococcus epidermidis isolated from healthy human skin. Journal of Ilam University of Medical Sciences. 2018;26(1):85-93.
  5. Manandhar S, Singh A, Varma A, Pandey S, Shrivastava N. Phenotypic and genotypic characterization of biofilm producing clinical coagulase negative staphylococci from Nepal and their antibiotic susceptibility pattern. Annals of Clinical Microbiology and Antimicrobials. 2021;20(1):1-1.
  6. Mohamad M, Deabate L, Belaieff W, Bouvet C, Zingg M, Kuczma P, Suva D, Uckay I. Prosthetic joint infections due to coagulase-negative staphylococci. International Journal of Infection. 2016;3(1).
  7. Salmani M. Survey of silver nanoparticles antibacterial activity against gram-positive and gram-negative bacteria in vitro. Tolooebehdasht. 2017;16(1):74-84.
  8. Najar-peerayeh s, jazayeri moghadas a, bakhshi b. Staphylococcus epidermidis virulence factor and ability of macroscopic biofilm production. koomesh. 2016;17(4):918-23
  9. Youssef FS, El-Banna HA, Elzorba HY, Galal AM. Application of some nanoparticles in the field of veterinary medicine. International journal of veterinary science and medicine. 2019;7(1):78-93.
  10. Mortazavi F.Nanotechnology applications in the management of microbial infections, nanotechnology monthly. 2015; 5: 214.
  11. Asghari A, Naghsh N, Madani M. In vitro Comparison of antifungal effect of silver nanoparticle on Candida producer of vulvovaginal candidiasis. Iranian Journal of Medical Microbiology. 2015;9(3):23-30
  12. Sadeghian M, Habibipour R, Asghar Seif. Effect of silver nano-particle on removing the enterococcus faecalis bacterium isolated from industrial resid. Medical Laboratory Journal. 2015;9(2):133-8.
  13. Shakerimoghaddam A, Razavi D, Rahvar F, Khurshid M, Mogharabi Ostadkelayeh S, Esmaeili S-A, Khaledi A, Eshraghi M. Evaluate the Effect of Zinc Oxide and Silver Nanoparticles on Biofilm and icaA Gene Expression in Methicillin-Resistant Staphylococcus aureus Isolated From Burn Wound Infection. Journal of Burn Care Res. 2020; 41(6):1253-1259.
  14. Armijo L, J. Wawrzyniec S, Kopciuch M, I. Brandt Y, C. Rivera A, J. Withers N, C. Cook N, L. Huber D, C. Monson T, D. C. Smyth H, Osiński M. Antibacterial activity of iron oxide, iron nitride, and tobramycin conjugated nanoparticles against Pseudomonas aeruginosa biofilms. Journal of Nanobiotechnology. 2020; 1(35).
  15. Siddique M, Aslam B, Imran M , Ashraf A, Nadeem H, Hayat S, Khurshid M, Afza M, Riaz Malik I, Shahzad M, Qureshi U, Haq Khan Z, Effect of Silver Nanoparticles on Biofilm Formation and EPS Production of Multidrug-Resistant Klebsiella pneumoniae, Biomedical Research International, 2020; 2020 (1-9)
  16. Dehghan Nayeri F, Mirhosseini M, Mafakheri S, Zarrabi MM. Antibacterial and antifungal effects of silver nanoparticles synthesized by the aqueous extract of sesame (Sesamum indicum L.). Cellular and Molecular Researches (Iranian Journal of Biology). 2018;31(1):16-26.
  17. Wang L, Hu C, Shao L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. International journal of nanomedicine. 2017;12:1227.
  18. Jawetz E, Melnick JL, Adelberg EA. Medizinische Mikrobiologie: Springer-Verlag; 2013.
  19. Huang Y-F, Wang Y-F, Yan X-P. Amine-functionalized magnetic nanoparticles for rapid capture and removal of bacterial pathogens. Environmental science & technology. 2010;44(20):7908-13.
  20. Azizian R, Azizi Jalilian F  , Askari H . Bacteriophage as a novel approach to inhibite and remove biofilms. Scientific Journal of Ilam University of Medical Sciences.2012;20(4):104-109.
  21. Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC advances. 2019;9(5):2673-702.
  22. Yun’an Qing LC, Li R, Liu G, Zhang Y, Tang X, Wang J, Liu H, Qin Y. Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies. International journal of nanomedicine. 2018;13:3311.
  23. Ramezani Ali Akbari, K., & Abdi Ali, A. Study of antimicrobial effects of several antibiotics and iron oxide nanoparticles on biofilm producing pseudomonas aeruginosa. Nanomedicine Journal. 2017;4(1), 37-43.
  24. Shahkarami F, Rashki S. Prevalence of ica operon related genes in Staphylococcus aureus and Staphylococcus epidermidis clinical isolates. Iranian Journal of Medical Microbiology. 2016;9(4):16-23.
  25. Feng Q, Liu Y, Huang J, Chen K, Huang J, Xiao K. Uptake, distribution, clearance, and toxicity of iron oxide nanoparticles with different sizes and coatings. Scientific reports. 2018;8(1):1-3.
  26. Xu X, Xu L, Yuan G, Wang Y, Qu Y, Zhou M. Synergistic combination of two antimicrobial agents closing each other’s mutant selection windows to prevent antimicrobial resistance. Scientific reports. 2018;8(1):1-7.
  27. Golipour F, Habibipour R, Moradihaghgou L. Investigating effects of superparamagnetic iron oxide nanoparticles on Candida albicans biofilm formation. Medical Laboratory Journal. 2019;13(6):44-50.
  28. Mohamadzade JP, Azizi H, Khatami M, Yaghobi H. Optimization of effective parameters on the suspension durability of green synthesis silver nanoparticles and evaluation their antimicrobial effect. 2020;8(1): 36-47.‎
  29. Habibipour R, Sadeghian M, Seif. Nanoparticle Effect in this Ashkhirshay Kelly Isolated from Industrial Wastewater. Guilan University of Medical Sciences. 2016; 25 (97): 50-34.
  30. Karaman DŞ, Manner S, Fallarero A, Rosenholm JM. Current approaches for exploration of nanoparticles as antibacterial agents. Antibacterial agents. 2017:61.
  31. Davaeifar S, Shahabani-Zahiri H, Mohammadi M, Akbari-Noghabi K. Evaluation of the Effect of Zinc Oxide Nanoparticles on the Inhibition of Biofilm formation of standard Pathogenic Bacteria and Comparison with Drug Resistant Isolates. Scientific journal of Ilam University of medical sciences. 2019;27(3):138-49. (Persian)
  32. Nabipour Y, Rostamzad A, Ahmady AS. The Evaluation of Antimicrobial Properties of Zink and Silver Nanparticles on Pathogenic Bacteria Pseudomonas Aeruginosa and Staphylococcus Aureus. 2015: 173-181.