مقایسه انواع مدل‌های رگرسیون شمارشی برای مدل‌سازی شاخص DMFT در دندان‌پزشکی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترا، گروه آمار زیستی، دانشکده پزشکی، دانشگاه علوم پزشکی شیراز، ‌شیراز، ایران.

2 استاد، گروه آمار زیستی، دانشکده پزشکی، دانشگاه علوم پزشکی شیراز، ‌شیراز، ایران.

3 دندان‌پزشک، گروه دندان‌پزشکی، دانشکده دندان‌پزشکی، دانشگاه علوم پزشکی لرستان، لرستان، ایران.

4 کارشناس ارشد، گروه اپیدمیولوژی و آمار زیستی، دانشکده بهداشت، دانشگاه علوم پزشکی سبزوار، سبزوار، ایران.

چکیده

اهداف بیماری‌های دهان در بیشتر جوامع شیوع دارند و پوسیدگی دندان شایع‌ترین بیماری مزمن درمیان کودکان و نوجوانان است. یکی از شاخص‌های پرکاربرد در مطالعات همه‌گیرشناسی مرتبط با دندان، شاخص DMFT است. در این مطالعه همه‌گیرشناسی پوسیدگی میان دانش‌آموزان بررسی شده و انواع مدل‌بندی DMFT با استفاده از داده واقعی مقایسه شده است.
مواد و روش ها این پژوهش حاصل مطالعه‌ای مقطعی طی سال‌های 1389 تا 1390 است که جامعه مطالعه‌شده در آن دانش‌آموزان 7 تا 12 ساله شهر خرم‌آباد در استان لرستان است که به روش نمونه‌گیری چندمرحله‌ای 920 نمونه انتخاب شدند. باتوجه‌به شمارشی‌بودن، چولگی به راست و انباشتگی صفر شاخص DMFT مدل‌های مختلف شامل رگرسیون پواسون، رگرسیون دوجمله‌ای منفی و رگرسیون پواسون متورم در صفر برای مدل‌بندی استفاده و انتخاب بهترین مدل براساس حداقل‌بودن مقدار AIC و BIC انجام شد. تجزیه‌وتحلیل داده‌ها با استفاده از ویرایش 12 نرم‌افزار Stata انجام و نتایج در سطح معناداری 05/0 گزارش شد.
یافته ها در این مطالعه 43درصد از دانش‌آموزان دختر و بقیه پسر بودند؛ به‌طوری‌که میانگین سن و DMFT آن‌ها به‌ترتیب 49/02±1/9 و 35/02±1/1 بود. 528 نفر از دانش‌آموزان پوسیدگی دندان داشتند. مدل رگرسیون پواسون متورم در صفر بهترین مدل از نظر نیکویی برازش درمقایسه‌با دیگر مدل‌ها بود. این مدل نشان داد که در سطح 05/0 رابطه معناداری بین سن، تحصیلات پدر و وجود پلاک میکروبی با درمعرض خطر پوسیدگی قرارگرفتن وجود دارد.
نتیجه گیری بهترین مدل بین مدل‌های استفاده‌شده در این تحقیق برای مدل‌بندی DMFT، رگرسیون پواسون متورم در صفر است. سن،‌ تحصیلات پدر و وجود پلاک میکروبی با پوسیدگی دندان دانش‌آموزان مرتبط است.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of Several Count Regression Models on Modeling Decayed Missed Filled Teeth Dental Index in Dentistry

نویسندگان [English]

  • Mehdi Birjandi 1
  • Mohammad Salehi-Marzijarani 2
  • Seyyed Mohammad Taghi Ayatollahi 3
  • Houshang Rashidi 3
  • Ali Hosseinzadeh 4
1 PhD Candidate, Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
2 PhD Candidate, Department of Biostatistics, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
3 DMD, Department of Dentistry, School of Dentistry, Lorestan University of Medical Sciences, Lorestan, Iran.
4 MSc., Department of Epidemiology & Biostatistics, School of Public Health, Sabzevar University of Medical Sciences, Sabzevar, Iran.
چکیده [English]

Background Oral diseases are common in many communities and dental caries is the most prevalent disease among children and adults. DMFT (Decayed Missed Filled Teeth) is one of the useful indexes in dental epidemiology. This study aimed to investigate caries epidemiology among students and compare several modeling of DMFT based on real data.
Materials & Methods This cross-sectional study was conducted on school children aged 7-12 years in Khoramabad City, Iran during 2010 to 2011. A total of 920 samples were recruited by multistage random sampling method. Regarding to countable data, right skewness and zero inflated variable of DMFT index, different models such as Poisson regression, negative-binomial regression, and zero-inflated Poisson regression were used for modeling, and the selection of the best model was based on the minimum amount of AIC and BIC. Data analysis was performed using Stata version 12, according to significant level of 5%.
Results In this study, 43% of school children were girls and the rest were boys, so that their Mean±SD age and DMFT were 9.02±1.49 years and 1.02±1.35, respectively. A total of 528 (out of 920) children had dental caries. Zero-inflated Poisson regression, comparing with other models, was of the best model for goodness of fit among the fitted models. This model revealed significant relationships between being at risk of dental caries and variables of age, father’s educational level, and presence of microbial plaque (P<0.05). Severity of dental caries intensified significantly as children’s ages increased (P<0.05).
Conclusion The best regression method for modeling DMFT among all models in this study was zero-inflated Poisson regression. Age, father’s educational level, and presence of microbial plaque were significantly correlated with children’s dental caries.

کلیدواژه‌ها [English]

  • Dental epidemiology
  • Dental caries
  • Poisson regression
  • DMFT index
Gussy MG, Waters EG, Walsh O, Kilpatrick N. Early childhood caries: current evidence for aetiology and prevention. Journal of Paediatrics and Child Health. 2006; 42(1-2):37-43. doi: 10.1111/j.1440-1754.2006.00777.x
Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M, et al. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet. 2013; 380(9859):2163-196. doi: 10.1016/s0140-6736(12)61729-2
Sheiham A. Dental caries affects body weight, growth and quality of life in pre-school children. British Dental Journal. 2006; 201(10):625-26. doi: 10.1038/sj.bdj.4814259
Sheiham A. Oral health, general health and quality of life. Bulletin of the World Health Organization. 2005; 83(9):644. PMCID: PMC2626333
Exley C. Bridging a gap: the (lack of a) sociology of oral health and health care. Sociology of Health & Illness. 2009; 31(7):1093–108. doi: 10.1111/j.1467-9566.2009.01173.x
Broadbent JM, Thomson WM. For debate: problems with the DMF index pertinent to dental caries data analysis. Community Dentistry and Oral Epidemiology. 2005; 33(6):400–09. doi: 10.1111/j.1600-0528.2005.00259.x
Klein H, Palmer CE, Knutson J. Studies on dental caries. Public Health Reports. 1938; 53(19):751-65. doi: 10.2307/4582532
Böhning D, Dietz E, Schlattmann P, Mendonca L, Kirchner U. The zero‐inflated poisson model and the decayed, missing and filled teeth index in dental epidemiology. Journal of the Royal Statistical Society: Series A (Statistics in Society). 1999; 162(2):195-209. doi: 10.1111/1467-985x.00130
Preisser JS, Stamm JW, Long DL, Kincade ME. Review and recommendations for zero-inflated count regression modeling of dental caries indices in epidemiological studies. Caries Research. 2012; 46(4):413–23. doi: 10.1159/000338992
Cameron AC, Trivedi PK. Regression analysis of count data. Cambridge: Cambridge University Press; 2013.
Phil S, Pandit PV. Analysis of dental caries using generalized linear and count regression models. Romanian Statistical Review. 2013; 61(10):73-82.
Lewsey J, Thomson W. The utility of the zero‐inflated Poisson and zero‐inflated negative binomial models: a case study of cross‐sectional and longitudinal DMF data examining the effect of socio‐economic status. Community Dent Oral Epidemiol. 2004; 32(3):183-89. doi: 10.1111/j.1600-0528.2004.00155.x
Hu MC, Pavlicova M, Nunes EV. Zero-inflated and hurdle models of count data with extra zeros: examples from an HIV-risk reduction intervention trial. American Journal of Drug and Alcohol Abuse. 2011; 37(5):367-75. doi: 10.3109/00952990.2011.597280
Jiang X, Huang B, Zaretzki RL, Richards S, Yan X, Zhang H. Investigating the influence of curbs on single-vehicle crash injury severity utilizing zero-inflated ordered probit models. Accident Analysis & Prevention. 2013; 57:55-66. doi: 10.1016/j.aap.2013.03.018
Kheirabadi G, Hashemi S, Akbaripour S, Salehi M, Maracy M. [Risk factors of suicide reattempt in patients admitted to Khorshid Hospital, Isfahan, Iran, 2009 (Persian)]. Iranian Journal of Epidemiology. 2012; 8(3):39-46.
Lecomte J, Benoit H, Etienne M, Bel L, Parent E. Modeling the habitat associations and spatial distribution of benthic macroinvertebrates: a hierarchical Bayesian model for zero-inflated biomass data. Ecological Modelling. 2013; 265:74-84. doi: 10.1016/j.ecolmodel.2013.06.017
Montazerifar F, Karajibani M, Esmaili M. [Relationship between the food intakes and obesity with dental caries among 6-11 years old children referred to Pediatric dental clinic of Zahedan (Persian)]. Journal Sabzevar University of Medical Sciences. 2015; 22(2):350-58.
Bandyopadhyay D. From mouth-level to tooth-level DMFS: Conceptualizing a theoretical framework. Journal of Dental, Oral and Craniofacial Epidemiology. 2013; 1(1):3-8. PMCID: PMC4662556
Moghimbeigi A, Eshraghian MR, Mohammad K, Mcardle B. Multilevel zero-inflated negative binomial regression modeling for over-dispersed count data with extra zeros. Journal of Applied Statistics. 2008; 35(10):1193-202. doi: 10.1080/02664760802273203
Jahani Y, Eshraghian MR, Foroushani AR, Nourijelyani K, Mohammad K, Shahravan A, et al. Effect of socio-demographic status on dental caries in pupils by using a multilevel hurdle model. Health. 2013; 5(7):1110-116. doi: 10.4236/health.2013.57150
Eslamipour F, Borzabadi-Farahani A, Asgari I. The relationship between aging and oral health inequalities assessed by the DMFT index. European Journal of Paediatric Dentistry. 2010; 11(4):193-198. PMID: 21250771
Castilho AR, Mialhe FL, Barbosa TD, Puppin-Rontani RM. Influence of family environment on children’s oral health: a systematic review. Journal de Pediatria. 2013; 89(2):116-23. doi: 10.1016/j.jped.2013.03.014
Bradshaw DJ, Lynch RJ. Diet and the microbial aetiology of dentalcaries: new paradigms. International Dental Journal. 2013; 63(2):64-72. doi: 10.1111/idj.12082
Vehkalahti MM, Widström E. Teaching received in caries prevention and perceived need for best practice guidelines among recent graduates in Finland. European Journal of Dental Education. 2004; 8(1):7-11. doi: 10.1111/j.1600-0579.2004.00327.x
دوره 23، شماره 3
مرداد و شهریور 1395
صفحه 468-477
  • تاریخ دریافت: 15 فروردین 1395
  • تاریخ بازنگری: 01 اردیبهشت 1395
  • تاریخ پذیرش: 29 خرداد 1395
  • تاریخ اولین انتشار: 01 مرداد 1395