بررسی تأثیر یوبیکوینون بر میزان مالون دی‌آلدئید فولیکول‌های پره‌آنترال موش سوری در کشت آزمایشگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه زیست‌شناسی سلولی و مولکولی، دانشکده زیست‌شناسی، دانشگاه دامغان، دامغان، ایران.

2 استادیار، گروه زیست‌شناسی سلولی و مولکولی، دانشکده زیست‌شناسی، دانشگاه دامغان، دامغان، ایران.

3 استادیار، گروه زیست‌شناسی عمومی، دانشکده زیست‌شناسی، دانشگاه دامغان، دامغان، ایران.

چکیده

اهداف استرس اکسیداتیو در کشت آزمایشگاهی اجتناب‌ناپذیر است. بنابراین هدف از مطالعه حاضر بررسی اثر یوبیکوینون به‌عنوان آنتی‌اکسیدانتی قوی بر پراکسیداسیون لیپیدی و نرخ تکوین فولیکول‌های پره‌آنترال موش سوری در شرایط کشت آزمایشگاهی است.
مواد و روش ها در این پژوهش فولیکول‌های پره‌آنترال از تخمدان موش‌های 14 تا 16 روزه به روش مکانیکی جدا (123n=) و به دو گروه کنترل (78=n) و تیمارشده با یوبیکوینون (45n=) تقسیم شدند. فولیکول‌های پره‌آنترال با حضور یا عدم حضور (کنترل) 50 میکرومولار یوبیکوینون کشت و تخمک‌گذاری در روز دوازدهم کشت القا شد، سپس نرخ رشد، بقا، تشکیل حفره آنتروم، تخمک‌گذاری و تخمک MII ارزیابی شد. به‌طور جداگانه مالون دی‌آلدئید (MDA) به‌عنوان نشانگر زیستی پراکسیداسیون لیپیدی در شروع کشت، در ساعت‌های 24، 48، 72 و 96 بررسی شد. داده‌ها با استفاده از نرم‌افزار SPSS و آزمون t مستقل تجزیه‌وتحلیل شد.
یافته ها در این پژوهش نرخ بقا و رشد فولیکول‌های پره‌آنترال تیمارشده با یوبیکوینون به‌طور معناداری بیشتر از گروه کنترل بود. نرخ تشکیل حفره آنتروم و تخمک‌گذاری و تخمک‌های MII در حضور یوبیکوینون به‌طور معناداری نسبت به گروه کنترل بیشتر بود، درحالی‌که مقدار مالون دی‌آلدئید فولیکول‌های تیمارشده با یوبیکوینون در مقایسه با گروه کنترل به‌طور معناداری کمتر بود.
نتیجه گیری محیط کشت غنی‌شده با یوبیکوینون، تکوین فولیکول‌های پره‌آنترال را با کاهش پراکسیداسیون لیپیدی بهبود می‌دهد.

کلیدواژه‌ها


عنوان مقاله [English]

The Effect of Ubiquinone on Malondialdehyde Content of Mouse Preantral Follicles During in Vitro Culture

نویسندگان [English]

  • Roya Hedayati Kashka 1
  • Saeed Zavareh 2
  • Taghi Lashkabolouki 3
1 MSc. Student, Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran.
2 Assistant Professor, Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran.
3 Assistant Professor, Department of General Biology, School of Biology, Damghan University, Damghan, Iran.
چکیده [English]

Background Oxidative stress is unavoidable during in vitro culture. The present study aimed to investigate the effect of ubiquinone as a potent antioxidant on lipid peroxidation and development rate of mice in vitro cultured preantral follicles.
Materials & Methods Preantral follicles were isolated mechanically from 14- to 16-day-old mice (n=123) and divided into control (n=78) and ubiquinone treated groups (n=45). Preantral follicles were cultured in the presence or absence (control) of 50 µM ubiquinone. Ovulation was induced at 12th day. The rates of growth, survival, antrum formation, ovulation, and MII oocytes were evaluated. Separately, malondialdehyde (MDA) as a biomarker of lipid peroxidation was assessed at different time points of 24, 48, 72, and 96 h. Statistical analysis was performed by Independent t test through using SPSS.
Results The growth and survival rate of ubiquinone treated preantral follicles was significantly higher than those of the control group. The rates of antrum formation, ovulation, and MII oocytes in the presence of ubiquinone were significantly higher than those of the control group. Whereas, MDA levels of ubiquinone treated preantral follicles was significantly lower compared with that of the control group.
Conclusion Supplemented culture medium with ubiquinone improves the development of preantral follicles by reducing the lipid peroxidation.

کلیدواژه‌ها [English]

  • Ubiquinone
  • Preantral follicles
  • Lipid peroxidation
Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reproductive Biology & Endocrinology. 2005; 3:28. doi: 10.1186/1477-7827-3-28
Agarwal A, Said TM, Bedaiwy MA, Banerjee J, Alvarez JG. Oxidative stress in an assisted reproductive techniques setting. Fertility and Sterility. 2006; 86(3):503-12. PMID: 16860798
Ashok Shinde JG, Pankaja Naik. Effect of free radicals & antioxidants on oxidative stress: A review. Journal of Dental & Allied Sciences. 2012; 1(2):63-72. doi: 10.4103/2277-4696.159144
Nasr-Esfahani MH, Aitken JR, Johnson MH. Hydrogen peroxide levels in mouse oocytes and early cleavage stage embryos developed in vitro or in vivo. Development. 1990; 109(2):501-07. PMID: 2401209
Agarwal A, Gupta S, Sikka S. The role of free radicals and antioxidants in reproduction. Current Opinion in Obstetrics and Gynecology. 2006; 18(3):325-32. doi: 10.1097/01.gco.0000193003.58158.4e
Combelles CM, Gupta S, Agarwal A. Could oxidative stress influence the in-vitro maturation of oocytes? Reproductive Biomedicine Online. 2009; 18(6):864-80. doi: 10.1016/s1472-6483(10)60038-7
Gupta S, Malhotra N, Sharma D, Chandra A, Ashok A. Oxidative stress and its role in female infertility and assisted reproduction: clinical implications. International Journal of Fertility & Sterility. 2009; 2(4):147-64.
Murray AA, Swales AK, Smith RE, Molinek MD, Hillier SG, Spears N. Follicular growth and oocyte competence in the in vitro cultured mouse follicle: effects of gonadotrophins and steroids. Molecular Human Reproduction. 2008; 14(2):75-83. doi: 10.1093/molehr/gam092
Gupta S, Sekhon L, Kim Y, Agarwal A. The role of oxidative stress and antioxidants in assisted reproduction. Current Women's Health Reviews. 2010; 6(3):227-38. doi: 10.2174/157340410792007046
Halliwell B. Cell culture, oxidative stress, and antioxidants: avoiding pitfalls. Biomedical Journal. 2014; 37(3):99-105. doi: 10.4103/2319-4170.128725
Zavareh S, Talebi A, Hasanzadeh H. Amending in vitro culture condition to overcome oxidative stress in assisted reproduction techniques (ART). Journal of Paramedical Sciences. 2015; 6(2):135-48.
Crane FL. Biochemical functions of coenzyme Q10. Journal of the American College of Nutrition. 2001; 20(6):591-98. doi: 10.1080/07315724.2001.10719063
Turunen M, Olsson J, Dallner G. Metabolism and function of coenzyme Q. Biochimica et Biophysica Acta (BBA) - Biomembranes. 2004; 1660(1–2):171-99. doi: 10.1016/j.bbamem.2003.11.012
Ahmadvand H, Mabuchi H, Nohara A, Kobayahi J, Kawashiri MA. Effects of Coenzyme Q10 on LDL Oxidation In vitro. Acta Medica Iranica. 2013; 51(1):12-18.
Littarru GP, Tiano L. Bioenergetic and antioxidant properties of coenzyme Q10: Recent developments. Molecular Biotechnology. 2007; 37(1):31-37. doi: 10.1007/s12033-007-0052-y
Baumber J, Ball BA, Linfor JJ, Meyers SA. Reactive oxygen species and cryopreservation promote DNA fragmentation in equine spermatozoa. Journal of Andrology. 2003; 24(4):621-28. doi: 10.1002/j.1939-4640.2003.tb02714.x
Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry. 1979; 95(2):351-58. doi: 10.1016/0003-2697(79)90738-3
Halliwell B. The antioxidant paradox. Lancet. 2000; 355(9210):1179-180. doi: 10.1016/s0140-6736(00)02075-4
Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? British Journal of Pharmacology. 2004; 142(2):231-55. doi: 10.1038/sj.bjp.0705776
Hatami S, Zavareh S, Salehnia M, Lashkar Bolouki T, Karimi I. Comparison of oxidative status of mouse pre-antral follicles derived from vitrified whole ovarian tissue and vitrified pre-antral follicles in the presence of alpha lipoic acid. Journal of Obstetrics & Gynaecology Research. 2014; 40(6):1680-688. doi: 10.1111/jog.12394
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the folin phenol reagent. Journal of Biology Chemistry. 1951; 193(1):265-75. PMID: 14907713
Hosseinzadeh E, Zavareh S, Lashkarboluki T. Coenzyme Q10 improves developmental competence of mice pre-antral follicle derived from vitrified ovary. Journal of Paramedical Sciences. 2015; 6(2):65-71.
Turi A, Giannubilo SR, Brugè F, Principi F, Battistoni S, Santoni F, et al. Coenzyme Q10 content in follicular fluid and its relationship with oocyte fertilization and embryo grading. Archives of Gynecology and Obstetrics. 2012; 285(4):1173-176. doi: 10.1007/s00404-011-2169-2
Talebi A, Zavareh S, Kashani MH, Lashgarbluki T, Karimi I. The effect of alpha lipoic acid on the developmental competence of mouse isolated preantral follicles. Journal of Assisted Reproduction & Genetics. 2012; 29(2):175-83. doi: 10.1007/s10815-011-9706-6
Alleva R, Tomassetti M, Battino M, Curatola G, Littarru G, Folkers K. Role of CoQ10 in preventing peroxidation of LDL subfraction. Proceedings of the National Academy of Sciences. 1995; 92(2):9388-391. doi: 10.1073/pnas.92.20.9388
Abedelahi A, Salehnia M, Allameh A, Davoodi D. Sodium selenite improves the in vitro follicular development by reducing the reactive oxygen species level and increasing the total antioxidant capacity and glutathione peroxide activity. Human Reproduction. 2010; 25(4):977-85. doi: 10.1093/humrep/deq002
Papis K, Poleszczuk O, Wenta-Muchalska E, Modlinski JA. Melatonin effect on bovine embryo development in vitro in relation to oxygen concentration. Journal of Pineal Research. 2007; 43(4):321-26. doi: 10.1111/j.1600-079x.2007.00479.x
Ganji R, Nabiuni M, Faraji R. Development of Mouse Preantral Follicle after In Vitro Culture in A Medium Containing Melatonin. Cell. 2015; 16(4):546-53. PMCID: PMC4297493
Hatami S, Zavareh S, Salehnia M, Lashkarbolouki T, Ghorbanian MT, Karimi I. The impact of alpha lipoic acid on developmental competence of mouse vitrified pre-antral follicles in comparison to those isolated from vitrified ovaries. Iranian Journal of Reproductive Medicine. 2014; 12(1):57-64. PMCID: PMC4009583